Rods (4052098411)

Part Number: 4052098411

52 ROD

Explanation of Part Numbers:

- Digits 1 & 2 = Product Class
- − Digits 3 & 4 = Material Grade

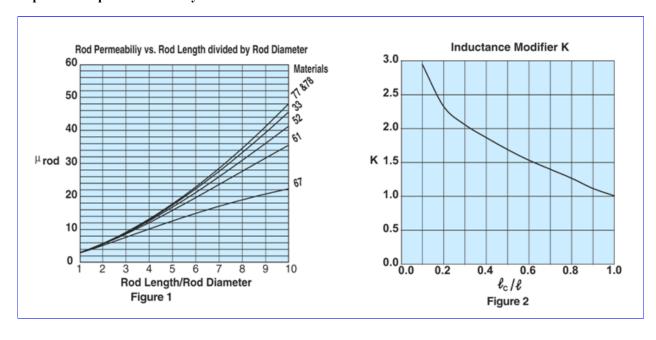
Pressed Fair- Rite rods are used extensively in high- energy storage designs.

These rods can also be used for inductive components that require temperature stability or have to accommodate large dc bias requirements.

Figure 2 rods have a $0.6 \text{ mm} (0.024 \square)$ maximum chamfer on the end faces.

For frequency tuned rod designs see section □ Antenna/ RFID Rods □.

☐ For any rod requirement not listed here, feel free to contact our customer service group for availability and pricing.


The $\Box A\Box$ dimension can be centerless ground to tighter tolerances.

Weight: 0.36 (g)

Dim	mm	mm tol	nominal inch	inch misc.	
A	2.5	±0.13	0.098		
C	15	±0.45	0.591		1

Figure 1 shows the rod permeability as a function of the length to diameter ratio for the six materials available in rods.

Figures 3, 4 and 5 illustrate typical temperature behavior of wound rods. Would rods in 33 and 77 material yield the best temperature stable inductors, see Figure 4. Both show a typical inductance change of <1% over the -40° to 120°C temperature range. The parts have a L/D ratio of 8.1. Lower ratios will change less. This is shown in detail in Figure 5 for the same 52 material but with the L/D ratio as the parameter. A lower ratio means a lower rod permeability but with improved temperature stability.

Wound Rod Inductance Calculations

To calculate the inductances of a wound rod the following formula can be used,

$$L=K\mu_0\mu rod \frac{N^2 Ae}{\ell} 10^4 (\mu H)$$
 Where: $K=Inductance\ modifier$
$$\mu_0=4\pi\,10^{-7}$$

$$\mu rod=rod\ permeability\ found\ in\ Figure\ 1.$$

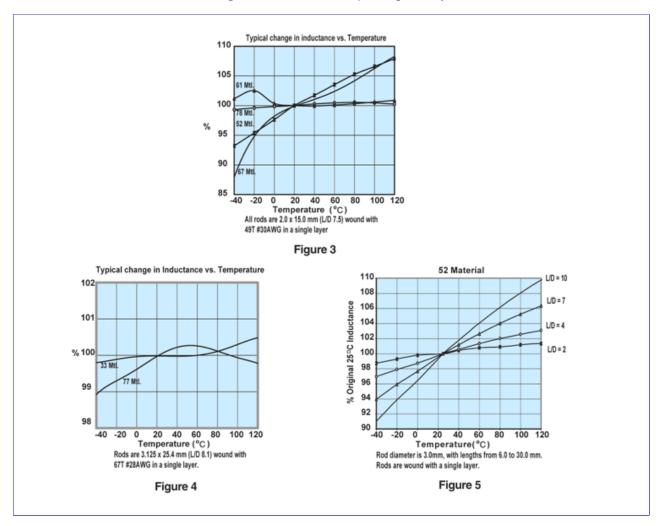
$$N=Number\ of\ turns$$

$$Ae=Cross\ sectional\ area\ of\ the\ rod\ (cm^2)$$

$$\ell=Length\ of\ the\ rod\ (cm)$$

$$\ell_c=Length\ of\ the\ winding\ (cm)$$

The inductance modifier is found in Figure 2. The ratio winding length divided by the rod length will give the inductance modifier. If the rod is totally wound the K=1. Shorter but centered winding will yield higher K values.


Using the rod 3061990871 as an example.

For this rod the length over diameter ratio is 8.33 and for 61 material Figure 1 gives a μ rod of 29. The rod has an AE= 0.0707 cm² and \Box =2.5 cm.

A winding of 80 turns of 30 AWG wire will yield a fully wound rod, therefore K=1.

Using the formula the calculated inductance is 65.96µH.

The measured values for both winding were 66.95 and 39.50µH respectively.

Fair- Rite Products Corp. • One Commercial Row, Wallkill, New York 12589-0288

888-324-7748 • 845-895-2055 • Fax: 845-895-2629 • ferrites@fair- rite.com • www.fair- rite.com