
November 2015 DocID028276 Rev 1 1/220

220

UM1942
User manual

Linux software user manual for STreamPlug ST2100

Introduction

The STreamPlug ST2100 is a highly integrated SoC including an ARM®-based core, a wide
set of peripherals and a PLC modem supporting the HomePlug™ AV standard. The full
configuration of STreamPlug software is composed of three most important components as
shown in Section 1: STreamPlug full software architecture on page 10: the
STMicroelectronics® interface layer with the core scheduler, the system software and OK
Linux®, (i.e.: a Linux kernel over the hypervisor provided by Open Kernel Labs, Inc. (OK
Labs), now General Dynamics Broadband). The minimal configuration of the STreamPlug
software includes the native Linux kernel running after the boot, without the core scheduler
and hypervisor. This configuration is called also “native Linux” or “native” in following
sections.

This document is not intended to be a tutorial on the Linux operating system or embedded
software design/development. It only covers topics that are specific to use the STreamPlug
Linux.

www.st.com

http://www.st.com

Contents UM1942

2/220 DocID028276 Rev 1

Contents

1 STreamPlug full software architecture . 10

2 Linux OS . 11

Linux support package (LSP) . 11

3 Platform . 13

3.1 Platform description . 13

3.1.1 Platform software overview . 13

3.1.2 Platform kernel source and configuration . 14

3.1.3 Platform configuration . 15

3.2 Board support . 15

3.2.1 Board registration . 16

3.2.2 Board compilation support . 16

3.3 Pad multiplexing support . 18

3.3.1 Pad software overview . 19

3.3.2 Pad kernel source and configuration . 21

3.3.3 Pad usage . 22

3.4 Clock framework . 24

3.4.1 Clock framework software overview . 24

3.4.2 Clock framework kernel source and configuration 26

3.4.3 Clock framework internals . 26

3.4.4 Clock framework usage . 29

3.5 Real-time clocks (RTC) . 30

3.5.1 RTC software overview . 31

3.5.2 RTC kernel source and configuration . 31

3.5.3 RTC platform configuration . 32

3.5.4 RTC usage . 32

4 Communication drivers . 34

4.1 Gigabit media access controller (GMAC) - Ethernet 34

4.1.1 GMAC software overview . 34

4.1.2 GMAC kernel source and configuration . 36

4.1.3 GMAC platform configuration . 37

4.1.4 GMAC usage . 37

DocID028276 Rev 1 3/220

UM1942 Contents

220

4.2 Universal serial bus (USB) host . 38

4.2.1 USB host kernel source and configuration . 39

4.2.2 USB host platform configuration . 41

4.2.3 USB host usage . 42

4.3 Universal serial bus (USB) device . 45

4.3.1 USB device software overview . 46

4.3.2 USB device kernel source and configuration . 47

4.3.3 USB device platform configuration . 47

4.3.4 USB device usage . 49

4.3.5 USB platform configuration . 53

4.3.6 USB platform usage . 54

4.4 I2C controller . 59

4.4.1 I2C controller hardware overview . 59

4.4.2 I2C controller software overview . 60

4.4.3 I2C controller kernel source and configuration . 61

4.4.4 I2C controller platform configuration . 61

4.4.5 I2C controller usage . 62

4.5 Serial peripheral interface (SPI) controller . 67

4.5.1 SPI software overview . 68

4.5.2 SPI kernel source and configuration . 72

4.5.3 SPI platform configuration . 72

4.5.4 SPI usage . 74

4.6 Linux TTY framework . 74

4.6.1 Linux TTY framework software overview . 74

4.6.2 Linux TTY framework kernel source . 74

4.6.3 Linux TTY framework usage . 74

4.7 Universal asynchronous receiver/transmitter (UART) 76

4.7.1 UART software overview . 77

4.7.2 UART kernel source and configuration . 78

4.7.3 UART platform configuration . 78

4.7.4 UART usage . 79

4.8 Control area network (CAN) . 79

4.8.1 CAN software overview . 79

4.8.2 CAN kernel source and configuration . 80

4.8.3 CAN platform configuration . 81

4.8.4 CAN usage . 82

Contents UM1942

4/220 DocID028276 Rev 1

4.9 Fast infrared data association (FIrDA) . 83

4.9.1 FIrDA software overview . 83

4.9.2 FIrDA kernel source and configuration . 83

4.9.3 FIrDA platform configuration . 84

4.9.4 FIrDA usage . 84

4.10 Peripheral component interconnect express (PCIe) 90

4.10.1 PCIe software overview . 90

4.10.2 PCIe kernel source and configuration . 97

4.10.3 PCIe platform configuration . 98

4.10.4 PCIe usage . 100

4.11 Serial advanced technology attachment (SATA) 100

4.11.1 SATA software overview . 100

4.11.2 SATA kernel source and configuration . 101

4.11.3 SATA platform configuration . 101

4.11.4 SATA usage . 101

5 Memory technology devices (MTD) . 107

5.1 Linux MTD framework . 107

MTD kernel configuration . 107

5.2 Accessing to MTD devices . 108

5.2.1 Raw access from user space . 108

5.2.2 Raw access from kernel space . 108

5.2.3 Access through file system from user space . 112

5.3 Flexible static memory controller (FSMC) .112

5.3.1 NAND, FSMC . 113

5.3.2 Parallel NOR, FSMC . 116

5.3.3 Static RAM (SRAM), flexible static memory controller 119

5.4 Serial memory interface (SMI) . 122

5.4.1 SMI hardware overview . 122

5.4.2 SMI software overview . 123

5.4.3 SMI kernel source and configuration . 124

5.4.4 SMI platform configuration . 124

DocID028276 Rev 1 5/220

UM1942 Contents

220

6 Accelerators . 127

6.1 JPEG encoder/decoder . 127

6.1.1 JPEG encoder/decoder software overview . 127

6.1.2 JPEG encoder/decoder kernel source and configuration 128

6.1.3 JPEG encoder/decoder platform configuration 128

6.1.4 JPEG encoder/decoder usage . 128

6.2 Direct memory access (DMA) . 139

6.2.1 DMA hardware overview . 140

6.2.2 DMA software overview . 140

6.2.3 DMA kernel source and configuration . 144

6.2.4 DMA platform configuration . 144

6.2.5 DMA usage . 145

6.3 Channel controller coprocessor (C3) . 147

6.3.1 C3 software overview . 148

6.3.2 C3 kernel source and configuration . 148

6.3.3 C3 platform configuration . 150

6.3.4 C3 usage . 150

7 Frame buffer drivers . 153

Color liquid crystal display (CLCD) . 153

CLCD software overview . 153

CLCD kernel source and configuration . 153

CLCD usage. 156

8 Miscellaneous devices . 158

8.1 General purpose input/output (GPIO) . 158

8.1.1 GPIO software overview . 158

8.1.2 GPIO kernel source and configuration . 159

8.1.3 GPIO platform configuration . 160

8.1.4 GPIO usage . 160

8.2 Application specific GPIO (AS GPIO) . 162

8.2.1 AS GPIO software overview . 162

8.2.2 AS GPIO kernel source and configuration . 163

8.2.3 AS GPIO platform configuration . 163

8.2.4 AS GPIO usage . 164

Contents UM1942

6/220 DocID028276 Rev 1

8.3 Watchdog timer (WDT) driver . 168

8.3.1 WDT software overview . 168

8.3.2 WDT kernel source and configuration . 169

8.3.3 WDT usage . 171

9 Audio drivers . 175

SPORT controller . 175

SPORT controller software overview . 176

SPORT controller kernel source and configuration . 177

SPORT controller platform configuration . 178

SPORT controller usage . 180

10 Video drivers . 181

10.1 Video for Linux Two framework . 181

Programming a V4L2 device . 182

10.2 SoC-Camera framework . 191

10.2.1 Camera interface . 193

10.2.2 V4L2 subdev API . 194

10.3 Video transport stream (TS) . 195

10.3.1 TS software overview . 195

10.3.2 TS kernel source and configuration . 196

10.3.3 TS platform configuration . 197

10.3.4 TS usage . 199

11 Virtualized devices . 201

11.1 KSP interface controller . 202

11.1.1 KSP software overview . 202

11.1.2 KSP kernel source and configuration . 205

11.1.3 KSP platform configuration . 205

11.2 Miscellaneous register access (Misc) . 205

Misc software overview . 205

11.3 Virtual log . 205

11.3.1 Virtual log software overview . 206

11.3.2 Virtual log kernel source and configuration . 208

11.3.3 Virtual log platform configuration . 208

11.3.4 Virtual log usage . 209

DocID028276 Rev 1 7/220

UM1942 Contents

220

11.4 SMI/FSMC NAND memory shared access . 209

11.4.1 SMI/FSMC NAND software overview . 209

11.4.2 SMI/FSMC NAND kernel source and configuration 210

11.4.3 SMI/FSMC NAND platform configuration . 210

11.5 HomePlug AV (HPAV) driver . 210

11.5.1 HPAV software overview . 211

11.5.2 HPAV kernel source and configuration . 212

11.5.3 HPAV platform configuration . 212

11.6 Image validate device driver . 213

11.6.1 Image validate device driver software overview 214

11.6.2 Image validate device driver kernel source and configuration 216

11.6.3 Image validate device driver platform configuration 216

11.6.4 Image validate device driver usage . 216

Appendix A Acronyms . 217

Revision history . 219

List of tables UM1942

8/220 DocID028276 Rev 1

List of tables

Table 1. Linux support package . 12
Table 2. Linux branches . 14
Table 3. STreamPlug machine ID. 16
Table 4. Command line options for padmux configuration . 22
Table 5. RTC configurations . 31
Table 6. STreamPlug STMMAC configurations . 36
Table 7. USB host configurations . 39
Table 8. USB gadget Linux kernel configuration . 47
Table 9. Linux gadget framework API. 52
Table 10. USB device control APIs. 53
Table 11. I2C configurations . 61
Table 12. SPI configurations. 72
Table 13. CAN Linux kernel configuration . 80
Table 14. FIrDA Linux kernel configuration . 83
Table 15. PCIe configurations . 97
Table 16. PCIe root complex configurations. 98
Table 17. PCIe endpoint configurations . 98
Table 18. SATA source code files . 101
Table 19. Linux kernel configuration for SATA support . 101
Table 20. MTD configurations. 107
Table 21. FSMC NAND configurations . 114
Table 22. FSMC NOR configurations . 118
Table 23. FSMC SCRAM configurations . 121
Table 24. SMI configurations . 124
Table 25. JPEG driver configuration options . 128
Table 26. DMA configurations . 144
Table 27. C3 Linux kernel configuration . 149
Table 28. CLCD configurations. 153
Table 29. GPIO configurations . 159
Table 30. AS GPIO configurations . 163
Table 31. AS GPIO PWM prescaler configurations . 166
Table 32. WDT Linux kernel configurations . 169
Table 33. Watchdog IOCTLs . 171
Table 34. SPORT- I2S configurations. 178
Table 35. TS Linux kernel configuration options. 196
Table 36. Image sensor delay parameter . 199
Table 37. KSP agent controller configurations . 205
Table 38. Virtual log configurations . 208
Table 39. Virtual Ethernet configurations . 212
Table 40. Image validity configuration . 216
Table 41. List of acronyms . 217
Table 42. Document revision history . 219

DocID028276 Rev 1 9/220

UM1942 List of figures

220

List of figures

Figure 1. STreamPlug full software architecture . 10
Figure 2. RTC software stack . 31
Figure 3. Ethernet framework . 34
Figure 4. USBD software architecture . 46
Figure 5. Zero gadget device . 49
Figure 6. I2C framework architecture . 60
Figure 7. SPI master/slave connectivity . 67
Figure 8. SPI framework architecture . 68
Figure 9. UART software system architecture . 77
Figure 10. NAND FSMC software stack . 114
Figure 11. NOR FSMC stack . 117
Figure 12. SRAM software stack . 120
Figure 13. SMI software stack . 123
Figure 14. JPEG software architecture . 127
Figure 15. DMA framework architecture . 141
Figure 16. GPIO software stack. 159
Figure 17. Dual PWM GPIO example . 167
Figure 18. WDT software stack . 169
Figure 19. ALSA framework. 176
Figure 20. V4L2 software overview . 181
Figure 21. SoC-Camera interface . 191
Figure 22. SoC-Camera software overview . 192
Figure 23. TS software overview . 195
Figure 24. HPAV stack software overview. 211

STreamPlug full software architecture UM1942

10/220 DocID028276 Rev 1

1 STreamPlug full software architecture

The interface layer with the core scheduler provides the necessary APIs to support the
system software layer and the hypervisor. The system software provides the core software
which implements the HPAV/1901/GP MAC as well as the supporting modules. The OK
Linux consists of a collection of all the Linux (2.6.35.0) device drivers that control the
specific hardware controllers embedded in the STreamPlug board and the virtualization
technology provided by the OKL, (i.e.: the OKL4 Microvisor). Using the OKL technology to
host a Linux guest OS confers the following benefits:

 Linux applications can run on the same processor side by side with legacy applications
and legacy OSes.

 Concurrent support for two OS environments eliminates the need for either
multiprocessor hardware or porting the legacy system to the Linux OS.

 Using “Secure HyperCellTM Technology”, OKL4 native cells can complement the Linux
virtual machine (VM) by providing an execution environment with better real-time
properties and stronger security.

OKL4 cells are well suited to hosting real-time OSes, easing implementation of latency-
sensitive functions without sacrificing the rich ecosystem support available for the Linux.

Figure 1. STreamPlug full software architecture

System softwareLinux
applications

OK Linux
kernel

Interface layer / core scheduler

Hypervisor

Support modules:
· Boot
· Firmware upgrade
· Production test

HPAV/1901/GP
MAC

AM039813

DocID028276 Rev 1 11/220

UM1942 Linux OS

220

2 Linux OS

The Linux supplied with the LSP, which is based on the kernel version 2.6.35.0, is licensed
under the GPLv2 and distributed with the full source code.

Linux is an open source operating system running on all major processor architectures,
including ARM processors. It is supported by a large group of engineers contributing back
into the open source. This makes Linux a very dynamic and fast moving operating system.
Key benefits of Linux on ARM:

 Complete scalable operating system providing a reliable multi-tasking environment

 Based on an open source model (GPL)

 Leverage a wide range of UNIX and open source applications

 Early availability on ARM processor-based platforms

 Used in many ARM technology-based designs including networking and wireless
products

 Broad support through open discussion forums.

Please refer to http://Kernel.org for references. Public forums are available to review
patches and information related to Linux development on ARM.

Linux support package (LSP)

STreamPlug LSP supports the following features of Linux:

 Based on Linux-2.6.35.0 version

 Virtual layer provided by the OKL4 between the kernel and HW (not present in the
native configuration)

 All drivers integrated into standard Linux device model

 Where ever possible the drivers available from the kernel.org repository mainline have
been reused

Linux OS UM1942

12/220 DocID028276 Rev 1

The LSP incorporates the STreamPlug specific set of drivers shown in Table 1.

Table 1. Linux support package

Section Module

Platform section

Paravirtualized system clock

Paravirtualized vector interrupt controller (VIC)

Real-time clock (RTC) driver

Communication device drivers

GMAC Ethernet driver

USB host

USB device

I2C driver

SPI driver

UART driver

CAN driver

FIrDA® driver

PCIe driver (root complex and endpoint)

SATA driver

Non-volatile memory device drivers

FSMC NAND driver

FSMC NOR driver

Serial NOR Flash driver (SMI interface)

USB mass storage support

I2C and SPI memory device support

Accelerators

JPEG driver

General purpose DMA (DMAC) drivers

C3 driver

Human interface device (HID) drivers

Miscellaneous device drivers

CLCD, LCD panel support

General purpose I/O (GPIO) driver

AS GPIO (I/O and PWM) driver

Watchdog (WDT) driver

Audio support SPORT-I2S driver, sound card device support

Video support TS driver, camera capture support

Virtual devices support

(these driver are available only in

paravirtualized configuration)

KSP interface

Misc regs access

Vlog

Flash memory shared access

HPAV driver

Image validate

DocID028276 Rev 1 13/220

UM1942 Platform

220

3 Platform

This section describes the basic STreamPlug platform code and driver distributed in the
standard machine specific layout of the Linux ARM architecture.

3.1 Platform description

The platform or the machine specific code is responsible for

 Initializing Virtual Interrupt Controller (or vector interrupt controller in the native
configuration)

 Initializing the timer (clock source and clock event)

 Initializing static memory mapping if required by the system

 Defining the IO_ADDRESS and related macros so that the static memory can be used

 Providing the platform specific code for

– Clock framework

– Padmux framework

– Initialization code for some specific controllers like FSMC and GPIO

– Defining virtual IRQs in case of shared IRQs on the platform

 Providing system specific header files like those describing IRQ lines and base
addresses of respective devices

 Platform specific drivers

3.1.1 Platform software overview

The machine specific code base is distributed among following directories:

 “arch/arm/plat-streamplug”- indicates all the STreamPlug SoCs

 “arch/arm/mach-streamplug - represents the STreamPlug family of boards

The platform is unique and when running in the full configuration it's paravirtualized by the
presence of a hypervisor between FW and HW.

The “mach-streamplug” directory contains the following files:

 “clock.c” (machines clock framework)

 “dw_pcie.c” (PCIe functions for Synopsys DW controllers)

 “fsmc-nor.c” (FSMC - flexible static memory controller - interface for NOR Flash)

 “fsmc-sram.c” (FSMC - flexible static memory controller - interface for SRAM device)

 “pswrst_ctrl.c” (STreamPlug machines IP's software reset control source file)

 “miphy.c” (MiPHY™ routine source file)

 “padmux.c” (STreamPlug machines IP's padmux handling source file)

 “streamplug1x.c” (STreamPlug1x machines common source file)

 “streamplug1x_pcie_rev_350.c” (supports STreamPlug1x PCIe rev_350)

 “streamplug10.c” (STreasmPlug10 machine source file)

 “streamplug_devel_board.c” (STreamPlug devel. board source file)

 “streamplug_ksp_agent.c” (STreamPlug KSP interface controller)

Platform UM1942

14/220 DocID028276 Rev 1

The “plat-streamplug” directory contains the following files:

 “clcd.c” (CLCD configuration file)

 “clock.c” (clock framework for STreamPlug platform)

 “ipswrst_ctrl.c” (IP's software reset control for STreamPlug platform)

 “jpeg.c” (JPEG platform specific information file)

 “misc.c” (Misc platform routine source file)

 “padmux.c” (STreamPlug platform specific IP's padmux handling source file)

 “pll_clk.S” (PLL clock configuration for STreamPlug platform)

 “time.c” (STreamPlug platform: timer configuration file)

 “udc.c” (STreamPlug platform: USB device configuration file).

3.1.2 Platform kernel source and configuration

The Linux kernel running on the STreamPlug SoC was inherited from the open source basic
software version 2.6.35. The STreamPlug chip is based on the ARM926 architecture.
Table 2 lists the branches added or modified within the ARM Linux tree in order to include
this release support of the STreamPlug machine (see Section 3.2.1) and device drivers:

Table 2. Linux branches

File or folder Status

/arch/arm/mach-STreamPlug New

/arch/arm/plat-STreamPlug New

/arch/arm/okl4-microvisor New

/arch/arm/boot/Makefile Modified in order to support the build of an ELF image compressed

/arch/arm/configs

Modified in order to include machine configurations.

Paravirtualized kernel:

okl4_hybrid_platform_streamplug_devel_board_defconfig

Native Linux configuration:

streamplug_devel_board_defconfig

/arch/arm/Kconfig
Modified in order to add the configuration for the STreamPlug

platform

/arch/arm/Makefile
Modified in order to set the Linux entry offset to 0x00048000 and to

add help comment for the ELF image

DocID028276 Rev 1 15/220

UM1942 Platform

220

3.1.3 Platform configuration

 The Linux kernel supports the following device drivers:

 Virtual Interrupt Controller

 Timers

 RTC

 Ethernet “Best Effort”

 USB host

 USB device (Ethernet, Zero and FS gadget) compiled as modules

 I2C, with STreamPlug configured as master on I2C bus

 SPI, with STreamPlug configured as master on SPI interface

 UART

 CAN

 FIrDA

 PCIe RC and EP

 SATA

 FSMC

 SMI

 JPEG (decoder and encoder)

 DMA

 C3

 CLCD

 GPIO

 AS GPIO (I/O and PWM)

 Watchdog

 SPORT Audio out & in

 TS

 Virtualised devices (full configuration)

3.2 Board support

The STreamPlug provides numerous possible functions, some of which are multiplexed with
each other. These configurations are very much application dependent. Each board
designed around the STreamPlug follows the application need to develop a board which
exploits a particular kind of applications. Accordingly, software needs to configure the SoC
to suit the board layout and let the user to use the desired functionality. Besides multiplexed
functionality there are other board dependent configurations like usage of GPIOs which
again must be handled in software.

Platform UM1942

16/220 DocID028276 Rev 1

3.2.1 Board registration

In ARM platforms each machine (board) is associated with a unique number called machine
ID (MACH_ID). In order to have a one-to-one association, a new MACH_ID should be
registered in the table of the all Linux ARM machine, supported by Russell King. This
machine ID can be registered from the arm website: www.arm.linux.org.uk/developer/
machines/?action=new.

Table 3 lists the machine ID defined into arch/arm/tools/mach-types for STreamPlug boards.

3.2.2 Board compilation support

To compile the Linux, first setup these environment variables:

$ export CROSS_COMPILE=arm-none-linux-gnueabi--

$ export ARCH=arm

The generic commands to use for building the Linux kernel are the following ones:

$ make distclean -> to clean all obj files

$ make <configuration file>-> to configure Linux Kernel for the desired
processor architecture

$ make <type of image> -> to build Linux Kernel elf Image

The makefile specific for the STreamPlug machine is below “<linux root>/arch/arm”.

Note: Before building the Linux, install the toolchain provided by the CodeSourcery “arm-2009q1-
203-arm-none-linux-gnueabi-”: www.sources.buildroot.net/arm-2009q1-203-arm-none-
linux-gnueabi-i686-pc-linux-gnu.tar.bz2.

Using:

$ make ARCH=arm distclean

will clean all *.objs and *.config files.

After cleaning the whole project, it's mandatory to build the configuration for the
STreamPlug, before building the Linux kernel image.

In order to build the Linux kernel binary image for the STreamPlug environment, the Linux
*.config file has to point to the configuration file specific for the STreamPlug chip; currently
the configuration used are included into:

 “okl4_hybrid_platform_streamplug_devel_board_defconfig” for the development SoC
board

 “streamplug_devel_board_defconfig” for the development SoC board (for native Linux)

below the “arch/arm/configs” folder.

Table 3. STreamPlug machine ID

machine_is_xxx CONFIG_xxxx MACH_TYPE_xxx Number

STreamPlug MACH_STREAMPLUG STreamPlug 4011

DocID028276 Rev 1 17/220

UM1942 Platform

220

The command line to setup the default configuration is:

$ make okl4_hybrid_platform_streamplug_devel_board_defconfig

Executing that command, the following traces will be displayed:

HOSTCC scripts/basic/fixdep

HOSTCC scripts/basic/docproc

HOSTCC scripts/basic/hash

HOSTCC scripts/kconfig/conf.o

HOSTCC scripts/kconfig/kxgettext.o

SHIPPED scripts/kconfig/zconf.tab.c

SHIPPED scripts/kconfig/lex.zconf.c

SHIPPED scripts/kconfig/zconf.hash.c

HOSTCC scripts/kconfig/zconf.tab.o

HOSTLD scripts/kconfig/conf

#

configuration written to .config

#

In case a new configuration is needed, the following commands are available:

$ make menuconfig

or

$ make xconfig

or

$ make gconfig

using:

$ make ARCH=arm CROSS_COMPILE=arm-none-linux-gnueabi- vmlinux

will compile the Linux kernel project and build the kernel image below “<linux root>” for the
full configuration

or

$ make ARCH=arm CROSS_COMPILE=arm-none-linux-gnueabi- elfImage

will compile the Linux kernel project and build the uncompressed kernel image wrapper in
the ELF container below “arch/arm/boot” for the native configuration.

Both configurations support Ext2, JFFS2 and UBI file systems.

Platform UM1942

18/220 DocID028276 Rev 1

3.3 Pad multiplexing support

In order to decrease the number of pads, the STreamPlug design multiplexes some of the
functionalities on the same I/O pins. So, which functionality has to be routed on a particular
pad is board specific information that has to be activated at run-time according to the
options that configure each peripheral, passed to the Linux at the startup via the command
line.

Based upon the actual board layout and the functionality which it supports, the devices are
listed into an array that is registered to the STreamPlug padmux framework.

From the STreamPlug machine architecture, below “arch/arm/mach-streamplug/padmux.c”:

static struct pmx_dev *streamplug_pmx_dev_lookups[] =

{

 &pmx_dev_arm_gpio1_info,

 &pmx_dev_arm_gpio2_info,

 &pmx_dev_pgc_info,

 &pmx_dev_dai_info,

 &pmx_dev_sport_info,

 &pmx_dev_ts_info,

 &pmx_dev_ark_gpio_info,

 &pmx_dev_clcd_info,

 &pmx_dev_uart1_info,

 &pmx_dev_uart2_info,

 &pmx_dev_sata_info,

 &pmx_dev_pcie_info,

 &pmx_dev_usb_info,

 &pmx_dev_eth_info,

 &pmx_dev_i2c_info,

 &pmx_dev_ssp_info,

 &pmx_dev_can_info,

 &pmx_dev_fsmc_info,

 &pmx_dev_firda_info

}

/* machine IP's padmux enabling */

void init streamplug1x_padmux(void)

{

 int i;

 for (i = 0; i < ARRAY_SIZE(streamplug_pmx_dev_lookups); i++)

 pmx_dev_enable(streamplug_pmx_dev_lookups[i]);

}

Padmux handling is enabled during the machine initialization phase.

DocID028276 Rev 1 19/220

UM1942 Platform

220

For development board support (“arch/arm/mach-streamplug/streamplug_devel_board.c”)
use:

static void init streamplug10_devel_board_init(void)

{

 ...

 streamplug1x_padmux();

 ...

}

3.3.1 Pad software overview

The devices options passed via the command line to the Linux kernel are parsed by the
padmux handler that is in the STreamPlug “arch/arm/mach-streamplug/padmux.c”. Its
purpose is to translate the string format of peripheral devices configuration passed by the
command line into platform data that will be needed to enable the activation and
configuration of a peripheral device by its own driver.

Multiplexed devices on the STreamPlug are abstracted through a structure “pmx_dev”
defined as:

/*

 * struct pmx_dev: device definition structure

 *

 * name: device name

 * platform: device to be register when pmx is actived

 * modes: device configuration array for different modes supported

 * mode_count: size of modes array

 * is_active: is peripheral active/enabled

 * selected: number of peripheral mode selected at bootime

 */

struct pmx_dev {

 char *name;

 struct pmx_dev_mode **modes;

 u8 mode_count;

 u8 selected;

 void (*parse)(struct pmx_dev *pmx, char *options);

};

Platform UM1942

20/220 DocID028276 Rev 1

where “pmx_dev_mode” is essentially an array of the register’s set and value which must be
written into it in order to enable the device

/*

 * struct pmx_dev_mode: configuration structure every group of modes of
a device

 *

 * name: mode name

 * mux_regs: array of mux registers, masks and valuesto enable the device
in

 * this group of modes

 * mux_reg_cnt: count of mux_regs elements

 */

struct pmx_dev_mode {

 char *name;

 struct pmx_mux_reg *mux_regs;

 u8 mux_reg_cnt;

 struct platform_device *platform_dev;

 struct amba_device *amba_dev;

 struct platform_device *platform_dev2;

 struct amba_device *amba_dev2;

};

where “pmx_mux_reg” is a simple structure defining the address where one must write
a particular value to enable the device.

/*

 * struct pmx_mux_reg: configuration structure every group of modes of a
device

 *

 * reg: register of multiplexing

 * value: value to be written

 */

struct pmx_mux_reg {

 struct pmx_reg *reg;

 u32 value;

};

For example consider enumeration of the multiplexed SSP device:

static struct pmx_reg conf_gpio_g21 = {

 .address = (void *)(GetOffset (sMiscRegs, conf_gpio_g21)),

 .mask = 0x7,

 .offset = 0,

 .size = 4,

};

 static struct pmx_mux_reg ssp_mode_regs[] = {

 { .reg = &conf_gpio_g21, .value = 0x0 },

DocID028276 Rev 1 21/220

UM1942 Platform

220

};

static struct pmx_dev_mode ssp_mode = {

 .name = "primary",

 .mux_regs = ssp_mode_regs,

 .mux_reg_cnt = ARRAY_SIZE(ssp_mode_regs),

 .amba_dev = &streamplug1x_ssp_device,

};

static struct pmx_dev_mode *ssp_modes[] = {

 &ssp_mode,

};

void parse_ssp_options(struct pmx_dev *dev, char *options)

{

 cs_gpio_pin = simple_strtoul(options, NULL, 10);

 printk(KERN_INFO "%s gpio_pin %d", func , cs_gpio_pin);

}

DECLARE_PMX_DEV(ssp, ssp_modes, 1, parse_ssp_options);

where “DECLARE_PMX_DEV” is the macro purpose of which is generated the final device
structure according to the optional parameters passed via the command line (in case of SSP
options are the GPIO pin number for select CHIP-SELECT) that will be used to enable the
correspondent device (i.e.: “pmx_dev_ssp_info” for SSP).

3.3.2 Pad kernel source and configuration

The STreamPlug platform padmux generic framework is implemented in “arch/arm/plat-
streamplug/padmux.c”.

Platform UM1942

22/220 DocID028276 Rev 1

3.3.3 Pad usage

Table 4 lists all of the possible configurations to be passed to the ATAG command line in
order to enable the desired set of peripherals.

Table 4. Command line options for padmux configuration

Peripheral Values

CLCD

clcd=on:24bpp, if the CLCD is enabled with 24 bpp

clcd=on:18bpp, if the CLCD is enabled with 18 bpp

clcd=off, if the CLCD is disabled

PCIe bridge

– pcie=on:rc:1, if the PCIe is configured as a root complex with the MiPHY clock generated by the
pll2 input clock

– pcie=on:rc:2, if the PCIe is configured as a root complex with the MiPHY clock generated by the
qfs4 input clock

– pcie=on:rc:3, if the PCIe is configured as a root complex with the MiPHY clock generated by the
external clock

– pcie=on:ep:1, if the PCIe is configured as an endpoint with the MiPHY clock generated by the
pll2 input clock

– pcie=on:ep:2, if the PCIe is configured as an endpoint with the MiPHY clock generated by the
qfs4 input clock

– pcie=on:ep:3, if the PCIe is configured as an endpoint with the MiPHY clock generated by the
external clock

– pcie=off, if the PCIe is disabled

USB controller

– usb=on:device, if the USB is activated as a gadget

– usb=on:host, if the USB is activated as a host

– usb=off if the USB is not configured

Ethernet

network
controller

– eth=<on,off,rtos>:<primary.secondary>:<1,. . . ,3>:<Mac Address>

Some examples:

– eth=on:primary:1:00:80:40:AE:20:98, if the device driver is configured on low GPIOs groups,
with the pll2 input clock as a PHY clock root, and with a default MAC address

– eth=on:secondary: :00:80:40:AE:20:98, if the device driver is configured on high GPIOs groups,
with the qfs4 input clock as a PHY clock root, and with a default MAC address

– eth=on:primary:3:00:80:40:AE:20:98, if the device driver is configured on low GPIOs groups,
with the external clock as a PHY clock root, and with a default MAC address

– eth=off, if Ethernet is disabled

– eth=rtos:primary, if the device driver is configured on high GPIOs groups and assigned to
system FW

I2C controller
– i2c=on, if the I2C interface is enabled and configured

– i2c=off, if the I2C interface is disabled

Synchronous

serial port

– ssp=on:<24,. . . ,39>, if the SPI interface is enabled and configured with a fixed CHIP-SELECT
line

– ssp=off, if the SPI interface is disabled

The default value for number of GPIO used by the OK Linux to reserve the SPI CHIP-SELECT
Line is 39. For STreamPlug OK Linux GPIOs the numbers reserved start from 24 to 39.

UART port 1

– uart1=on:primary, the UART1 enabled on the GPIO primary group

– uart1=on:secondary, the UART1 enabled on the GPIO secondary group

– uart1=off, the UART1 switched off

– uart1=rtos:secondary, the UART1 enabled on the secondary group by system FW

DocID028276 Rev 1 23/220

UM1942 Platform

220

UART port 2

– uart2=on:primary, the UART2 enabled on the GPIO primary group

– uart2=on:secondary, the UART2 enabled on the GPIO secondary group

– uart2=off, the UART2 switched off

– uart2=rtos:secondary, the UART2 enabled on the secondary group by system FW

CAN

network
controller

– can=on:primary, if the device driver is configured on the low GPIOs group

– can=on:secondary, if the device driver is configured on the high GPIOs group

– can=off, if the device driver is disabled

FIrDA

– firda=on:1, if it supports only the SIR mode

– firda=on:2, if it supports only SIR and MIR modes

– firda=on:3, if it supports all SIR, MIR and FIR modes

– firda=off, if the device driver is disabled

FSMC

– fsmc=on:<nand,sram,nor><0,1>:[initdone]

Some examples:

– fsmc=on:nand0:initdone, if the FSMC controller is enabled and configured for NAND Flash
memory devices with 8-bit data width, while timing parameters are not changed (initialized by
RTOS)

– fsmc=on:nand1, if the FSMC controller is enabled and configured for NAND Flash memory
devices with 16-bit data width

– fsmc=on:nor1, if the FSMC controller is enabled and configured for Parallel NOR Flash memory
devices with 16-bit data width

– fsmc=off, if the FSMC is disabled

SATA

– sata=on:1, if the SATA is enabled and configured with the MiPHY clock generated by the pll2
input clock

– sata=on:2, if the SATA is enabled and with the MiPHY clock generated by the qfs4 input clock

– sata=on:3, if the SATA is enabled and with the MiPHY clock generated by the external clock

– sata=off, if the SATA is disabled

SPORT
– sport=on, if the SPORT is enabled

– sport=off, if the SPORT is disabled

TS
– ts=on, if the TS is enabled

– ts=off, if the TS is disabled

AS GPIO

– ark_gpio=<on,off>:<nnnnnn,n=0,1,2>

Some examples:

– ark_gpio=on:110000, if the ARK_GPIO device driver is enabled with only the GPIOs group A
and B enabled

– ark_gpio=on:011221, if the ARK_GPIO device driver is enabled with AS GPIOs groups:

– A disabled

– B enabled

– C enabled on the GPIO_GROUP 04

– D enabled on the GPIO_GROUP 10

– E enabled on the GPIO_GROUP 18

– F enabled on the GPIO_GROUP 13

– ark_gpio=off, if the AS GPIO is disabled

Table 4. Command line options for padmux configuration (continued)

Peripheral Values

Platform UM1942

24/220 DocID028276 Rev 1

Note: Important: It is up to the user to ensure that no conflicting configurations are chosen.
Normally this is taken care of in the board design, because the board has to be designed
with a particular configuration option in mind and any conflicts must be resolved at the board
design level. In the LSP support, only the devices supported by the board have to be
enumerated in the manner described above. However, if there are any conflicting options
chosen, the padmux initialization for the device mentioned last in the array is retained and
the other device multiplexed with this particular device may not work.

3.4 Clock framework

The clock framework defines programming interfaces to support software management of
the system clock tree. This framework is widely used with system-on-chip (SOC) platforms
to support various devices which may need custom clock rates. Note that these “clocks”
don't relate to timekeeping or real-time clocks (RTC), each of which have separate
frameworks.

3.4.1 Clock framework software overview

Clock framework support in the LSP is implemented around the Linux abstraction layer for
clocks defined in “include/linux/clk.h”.

This abstraction only tends to declare and not define the APIs with their standard interfaces
that must be implemented by the required platform. The platform is also expected to define
the clock abstraction through “struct clk”. The struct clk is abstracted in “arch/arm/plat-
streamplug/include/plat/clock.h”:

/**

 * struct clk - clock structure

 * @usage_count: num of users who enabled this clock

 * @flags: flags for clock properties

 * @rate: programmed clock rate in Hz

GP (ARM)
GPIO

– arm_gpio1=on, if the GP gpio group 1 is enabled

– arm_gpio2=on, if the GP gpio group 2 is enabled

For the native Linux, they should be always on and they are set by default cmdline.

LINUX
CONSOLE

– console=none if the Linux console is suppressed

– console=<tty device>,<tty configuration>

– console= ttyAMA0,115200n8, if the Linux console on ttyAMA0 with configuration: baudrate
115200 bps, flow control “none”, data size 8 bits (default)

– console= ttyAMA1,115200n8, if the Linux console on ttyAMA1 (valid only if both UARTs to
Linux) with default configuration.

SYSTEM
(RTOS)

CONSOLE

– rtosconsole=<uart port>,<uart configuration>

– rtosconsole=uart1,115200n81

– rtosconsole=uart2,115200n81 (default)

If not present no console is available on UARTs.

In this case, the stpconsole application example can be used to access the RTOS console from
the Linux.

Table 4. Command line options for padmux configuration (continued)

Peripheral Values

DocID028276 Rev 1 25/220

UM1942 Platform

220

 * @en_reg: clk enable/disable reg

 * @en_reg_bit: clk enable/disable bit

 * @ops: clk enable/disable ops - generic_clkops selected if NULL

 * @recalc: pointer to clock rate recalculate function

 * @set_rate: pointer to clock set rate function

 * @calc_rate: pointer to clock get rate function for index

 * @rate_config: rate configuration information, used by set_rate

 * @div_factor: division factor to parent clock.

 * @pclk: current parent clk

 * @pclk_sel: pointer to parent selection structure

 * @pclk_sel_shift: register shift for selecting parent of this clock

 * @children: list for childrens or this clock

 * @sibling: node for list of clocks having same parents

 * @private_data: clock specific private data

 * @node: list to maintain clocks linearly

 * @cl: clocklook up assoicated with this clock

 * @dent: object for debugfs

 */

struct clk {

 unsigned int usage_count; unsigned int flags; unsigned long rate;
unsigned int *en_reg;

 u8 en_reg_bit;

 const struct clkops *ops;

 int (*recalc) (struct clk *clk, unsigned long *rate,

 unsigned long prate);

 int (*set_rate) (struct clk *clk, unsigned long rate); unsigned long
(*calc_rate)(struct clk *, int index);

 struct rate_config rate_config;

 unsigned int div_factor;

 struct clk *pclk;

 struct pclk_sel *pclk_sel;

 unsigned int pclk_sel_shift;

 struct list_head children; struct list_head sibling; void *private_data;

 #ifdef CONFIG_DEBUG_FS

 struct list_head node; struct clk_lookup *cl; struct dentry *dent;

 #endif

};

Platform UM1942

26/220 DocID028276 Rev 1

The following APIs are defined by the standard Linux CLK abstraction, which can be found
in “include/linux/clk.h”:

 “clk_get” lookup and obtain a reference to a clock producer

 “clk_enable” inform the system when the clock source should be running

 “clk_disable” inform the system when the clock source is no longer required

 “clk_get_rate” obtain the current clock rate (in Hz) for a clock source. (This is only valid
once the clock source has been enabled.)

 “clk_put” “free” the clock source

 “clk_round_rate” adjust a rate to the exact rate a clock can provide

 “clk_set_rate” set the clock rate for a clock source

 “clk_set_parent” set the parent clock source for this clock

 “clk_get_parent” get the parent clock source for this clock

 “clk_get_sys” get a clock based upon the device name

 “clk_add_alias” add a new clock alias

3.4.2 Clock framework kernel source and configuration

Above mentioned APIs and “struct clk” are implemented in following files:

 “arch/arm/plat-streamplug/include/plat/clock.h”

 “arch/arm/plat/streamplug/clock.c”

while the definitions and enumerations of each clock are defined in the following file:
“arch/arm/mach-streamplug/clock.c”.

3.4.3 Clock framework internals

This section defines and provides an overview about the internal implementation of the
STreamPlug clock framework. Users may not need to know all the details mentioned below.
However, referring to this section can be beneficial to extend the clock framework or the rate
tables in order to adapt to specific needs.

All of the clocks which can be used in the system are defined in: “arch/arm/mach-
streamplug/clock.c”. For example the clk struct for the UART1 device is configured as
follows:

/* uart1 clock */

static struct clk uart1_clk =

{

 .flags = ENABLED_ONCE,

 .en_reg = (u32*)(GetOffset (sMiscRegs, low_speed_sub_clk_enb_reg)),

 .en_reg_bit = UART1_CLKENB_Pos,

 .pclk_sel = &uart_pclk_sel,

 .pclk_sel_shift = UART_CLKSEL_Pos,

 .recalc = &follow_parent,

};

DocID028276 Rev 1 27/220

UM1942 Platform

220

Note that this clock object has:

 an enable/disable bit

 a multiple parent clock possible, defined through “uart1_pclk_sel”

 and that it just follows parent's clock rate without applying any divisor

In general a parent clock can be selected by writing corresponding “pclk_val to
pclk_sel_reg” with a mask of “pclk_sel_mask “shifted by “pclk_sel_shift”. The user would not
bother with these internal details because they are implementation details, the user may just
call the “clk_set_parent” API. The “uart_synth_clk “and “pll3_usb_48m_clk” which are
possible parents of the UART clock, can have their own parents and so on, in order to build
the complete hierarchy.

An example to show the possible parents of the UART 1 is:

/* uart parent select structure */

static struct pclk_sel uart_pclk_sel =

{

 .pclk_info = uart_pclk_info,

 .pclk_count = ARRAY_SIZE(uart_pclk_info),

 .pclk_sel_reg = (u32*)(GetOffset (sMiscRegs, gen_clk_cfg_reg)),

 .pclk_sel_mask = GEN_CLK_CFG_UART_CLKSEL_MASK,

};

static struct pclk_info uart_pclk_info[] =

{

 {

 .pclk = &uart_synth_clk,

 .pclk_val = GEN_CLK_PLL1_VAL,

 },

 {

 .pclk = &pll3_usb_48m_clk,

 .pclk_val = GEN_CLK_PLL3_VAL,

 },

};

These structures define possible parents of the UART1 and how to select them, for
example:

 “uart_synth_clk” can be selected by writing 1 onto the bit 4 “UART/UART2” of the
“gen_clk_cfg_reg” miscellaneous register

 “pll3_usb_48m_clk” can be selected by writing 0 onto the bit 4 “UART/UART2” of the
“gen_clk_cfg_reg” miscellaneous register

As an example to show one of the parents, “uart_synth_clk”:

/* uart synth clock */

static struct clk uart_synth_clk =

{

 .en_reg = (u32*)(GetOffset (sMiscRegs, uart_clk_synt_reg)),

 .en_reg_bit = SYNT_CLK_ENB_Pos,

 .pclk = &pll1_clk,

Platform UM1942

28/220 DocID028276 Rev 1

 .calc_rate = &aux_calc_rate,

 .recalc = &aux_clk_recalc,

 .set_rate = &aux_clk_set_rate,

 .rate_config = {aux_rtbl, ARRAY_SIZE(aux_rtbl), 1},

 .private_data = &uart_synth_config,

};

Because this is a synthesizer which has divisors and multipliers, it can adapt to the required
rate. For this, it defines its “calc_rate”, “recalc” and “set_rate” functions which can be used
by the clock framework to set the desired clock rate. It also defines rate_config which
actually points to a table (“aux_rtbl”) which contains entries of divisors values used to
generate a given rate.

The “rate_config” is a simple structure defined as:

/**

 * struct rate_config - clk rate configurations

 * @tbls: array of device specific clk rate tables, in ascending order
of rates

 * @count: size of tbls array

 * @default_index: default setting when originally disabled

 */

struct rate_config {

 void *tbls;

 u8 count;

 u8 default_index;

};

The “rate_config” points to a rate table (see example below) and a default index. The default
index is used by the clock framework to fall back to a particular rate (pointed by index) when
an invalid rate attempts to be programmed.

/* aux rate configuration table, in ascending order of rates */

struct aux_rate_tbl aux_rtbl[] =

{

 /* For PLL1 = 332 MHz */

 {.xscale = 2, .yscale = 37, .eq = 0},/* 9 MHz */

 {.xscale = 1, .yscale = 8, .eq = 0}, /* 20.075 MHz */

 {.xscale = 1, .yscale = 4, .eq = 0}, /* 41.5 MHz */

 {.xscale = 1, .yscale = 2, .eq = 0}, /* 83 MHz */

 {.xscale = 1, .yscale = 1, .eq = 0}, /* 166 MHz */

};

Tables such as this may vary from the clock to clock for e.g.: the auxiliary synthesizer's table
format is different from PLL to VCO and so on.

Using this rate table, the clock framework can program the synthesizer to generate desired
frequency. The user can just simply call the “clk_set_rate” API.

In addition, please note that the entries in the above “aux_rtbl” should be sorted in
ascending order according to the output clock rate generated assuming a constant parent
clock rate.

DocID028276 Rev 1 29/220

UM1942 Platform

220

3.4.4 Clock framework usage

The LSP tries to define and enumerate all possible clocks in the STreamPlug SoC. The
following clocks are defined in: “arch/arm/mach-streamplug/clocks.c”:

/* array of all streamplug 1x clock lookups */

static struct clk_lookup streamplug_clk_lookups[] = {

 /* root clks */

 { .con_id = "dummy_clk",.clk = &dummy_clk},

 { .con_id = "osc_32k_clk", .clk = &osc_32k_clk},

 { .con_id = "osc_24m_clk", .clk = &osc_24m_clk},

 /* clock derived from 32 KHz osc clk */

 { .dev_id = "rtc-streamplug", .con_id = "hclk",.clk = &rtc_clk},

 /* clock derived from 24 MHz osc clk */

 { .con_id = "pll1_clk", .clk = &pll1_clk},

 { .con_id = "pll2_clk", .clk = &pll2_clk},

 { .con_id = "pll3_usb_48m_clk", .clk = &pll3_usb_48m_clk},

 { .dev_id = "wdt", .con_id = "hclk", .clk = &wdt_clk},

 /* clock derived from pll1 clk */

 { .con_id = "cpu_clk",.clk = &cpu_clk},

 { .con_id = "ahb_clk",.clk = &ahb_clk},

 { .con_id = "uart_synth_clk", .clk = &uart_synth_clk},

 { .con_id = "firda_synth_clk", .clk = &firda_synth_clk},

 { .con_id = "gpt0_synth_clk", .clk = &gpt0_synth_clk},

 { .con_id = "gpt1_synth_clk", .clk = &gpt1_synth_clk},

 { .con_id = "gpt2_synth_clk", .clk = &gpt2_synth_clk},

 { .dev_id = "uart1", .con_id = "hclk",.clk = &uart1_clk},

 { .dev_id = "uart2", .con_id = "hclk",.clk = &uart2_clk},

 { .dev_id = "dice_fir", .con_id = "hclk", .clk = &firda_clk},

 { .dev_id = "dice_ir", .con_id = "hclk", .clk = &firda_clk},

 { .dev_id = "gpt0", .con_id = "hclk", .clk = &gpt0_clk},

 { .dev_id = "gpt1", .con_id = "hclk", .clk = &gpt1_clk},

 { .dev_id = "gpt2", .con_id = "hclk", .clk = &gpt2_clk},

 /* clock derived from pll3 clk */

 { .dev_id = "designware_udc", .con_id = "hclk",.clk = &usbd_clk},

 { .con_id = "usbh_clk",.clk = &usbh_clk},

 /* clock derived from ahb clk */

 { .con_id = "ahbmult2_clk", .clk = &ahbmult2_clk},

 { .con_id = "ddr_clk",.clk = &ddr_clk},

 { .con_id = "apb_lowsub_clk",.clk = &apb_lowsub_clk},

 { .con_id = "apb_bassub_clk",.clk = &apb_bassub_clk},

 { .con_id = "apb_appsub_clk",.clk = &apb_appsub_clk},

 { .con_id = "apb_armsub_clk",.clk = &apb_armsub_clk},

 { .dev_id = "i2c_designware.0", .con_id = "hclk",.clk =
&i2c_clk},

 { .dev_id = "dw_dmac", .con_id = "hclk",.clk = &dma_clk},

 { .dev_id = "jpeg-designware", .con_id = "hclk",.clk = &jpeg_clk},

Platform UM1942

30/220 DocID028276 Rev 1

 { .dev_id = "stmmaceth",.con_id = "ptp", .clk = &ptp_clk},

 { .dev_id = "stmmaceth", .con_id = "eth",.clk = &mii_clk},

 { .dev_id = "stmmaceth",.con_id = "eth_phy", .clk =
ð_phy_clk},

 { .dev_id = "stmmaceth", .con_id = "hclk",.clk = &gmac_clk},

 { .dev_id = "smi",.con_id = "hclk",.clk = &smi_clk},

 { .dev_id = "c3", .con_id = "hclk",.clk = &c3_clk},

 { .dev_id = "streamplug-sport", .con_id = "hclk",.clk =
&sport_clk},

 { .dev_id = "streamplug-ts.0", .con_id = "hclk",.clk = &ts_clk},

 /* clock derived from apb clk */

 { .dev_id = "ssp-pl022.0", .con_id = "hclk",.clk = &ssp_clk},

 { .dev_id = "streamplug_ark_gpio", .con_id = "hclk",.clk =
&ark_gpio_clk},

 { .dev_id = "gpio1", .con_id = "hclk",.clk = &gpio1_clk},

 { .dev_id = "gpio2", .con_id = "hclk",.clk = &gpio2_clk},

 {.con_id = "clcd_synth_clk",.clk = &clcd_synth_clk},

 { .dev_id = "clcd", .con_id = "clcdclk", .clk = &clcd_clk},

 { .dev_id = "clcd", .con_id = "hclk", .clk = &amba_clcd_clk},

 {.con_id = "fsmc",.clk = &fsmc_clk},

 {.dev_id = "fsmc-nor",.clk = &fsmc_nor_clk},

 {.dev_id = "fsmc-sram",.clk = &fsmc_sram_clk},

 {.dev_id = "fsmc-nand",.clk = &fsmc_nand_clk},

 { .dev_id = "c_can_platform.1", .clk = &can1_clk},

 { .dev_id = "c_can_platform.2", .clk = &can2_clk},

 {.dev_id = "uport",.clk = &uport_clk},

 {.con_id = "dw_pcie",.clk = &pcie_clk},

 {.dev_id = "dw_pcie-rc", .con_id = "hclk", .clk = &pcie_rc_clk},

 {.dev_id = "dw_pcie-ep", .con_id = "hclk", .clk = &pcie_ep_clk},

 {.dev_id = "ahci",.clk = &sata_clk},

};

3.5 Real-time clocks (RTC)

The real-time clocks (RTC) is used to keep track of days, dates and time, including the
century, year, month, hour, minutes and seconds.

DocID028276 Rev 1 31/220

UM1942 Platform

220

3.5.1 RTC software overview

RTC support in the kernel is provided in the RTC framework. This is illustrated in Figure 2.

Figure 2. RTC software stack

3.5.2 RTC kernel source and configuration

The driver is implemented in “drivers/rtc/rtc-streamplug.c” and follows the Linux RTC class
framework documented under: “linux-2.6/Documentation/rtc.txt”. Table 5 lists the “Kconfig”
options available for the RTC.

hwclock

RTC core

rtcwake User space

Kernel space

Hardware

RTC driver

RTC H/W

AM039709

Table 5. RTC configurations

Configuration Description

CONFIG_RTC_DRV_STREAMPLUG Enables the STreamPlug RTC support

Platform UM1942

32/220 DocID028276 Rev 1

3.5.3 RTC platform configuration

There are no platform options available for this driver and the driver on its own functionally
initializes the RTC hardware.

The RTC driver is enumerated in its respective CPU file “arch/arm/mach-streamplug/
streamplug1x.c” which can be included by a corresponding board file to avail the support.

/* rtc device registration */

static struct resource rtc_resources[] = {

 {

 .start = STREAMPLUG1X_ICM3_RTC_BASE,

 .end = STREAMPLUG1X_ICM3_RTC_BASE + SZ_4K - 1,

 .flags = IORESOURCE_MEM,

 }, {

 .start = STREAMPLUG1X_IRQ_BAS_SUBS_RTC,

 .flags = IORESOURCE_IRQ,

 },

};

struct platform_device streamplug1x_rtc_device = {

 .name = "rtc-streamplug",

 .id = -1,

 .num_resources = ARRAY_SIZE(rtc_resources),

 .resource = rtc_resources,

};

3.5.4 RTC usage

The hwclock is a shell utility for accessing the RTC clock. It is used to display the current
time, set the hardware clock to a specified time, set the hardware clock to the system time,
and set the system time from the hardware clock. The hwclock utility can be run periodically
to insert or remove time from the hardware clock in order to compensate for a systematic
drift (where the clock consistently gains or loses time at a certain rate if left to run).

hwclock -h

hwclock: invalid option -- 'h'

BusyBox v1.18.4 (2015-01-27 15:55:04 CET) multi-call binary.

Usage: hwclock [-r|--show] [-s|--hctosys] [-w|--systohc] [-l|--localtime]
[-u|--utc] [-f FILE]

Query and set hardware clock (RTC)

Options:

 -r Show hardware clock time

 -s Set system time from hardware clock

 -w Set hardware clock to system time

 -u Hardware clock is in UTC

 -l Hardware clock is in local time

DocID028276 Rev 1 33/220

UM1942 Platform

220

 -f FILE Use specified device (e.g. /dev/rtc2)

date 2015.02.02-03:34

Mon Feb 2 03:34:00 UTC 2015

date 2015.02.02-15:34

Mon Feb 2 15:34:00 UTC 2015

hwclock -r

Wed Dec 31 23:59:59 1969 0.000000 seconds

hwclock -w

hwclock -s

reboot

...

date

Mon Feb 2 15:36:26 UTC 2015

Communication drivers UM1942

34/220 DocID028276 Rev 1

4 Communication drivers

The communication drivers provide the support to the STreamPlug interfaces like Ethernet,
USB, I2C and SPI.

4.1 Gigabit media access controller (GMAC) - Ethernet

Ethernet is a family of standard technologies widely used in local area networks (LAN). The
GMAC Ethernet controller is embedded into the STreamPlug architecture and it is hard
configured to support only fast Ethernet. This section describes the STMMAC (GMAC)
Ethernet driver.

4.1.1 GMAC software overview

The STMMAC Ethernet device driver sits on the top of the GMAC controller and interfaces
with the Linux TCP/IP stack through the standard Linux network interface as shown in
Figure 3.

Figure 3. Ethernet framework

The software overview section is broadly divided into two parts. The first part is more related
to the STMMAC device driver core; while the second part is more related to the Ethernet
PHY configurations that the user may need to handle through the driver.

HTTP

Socket interface

SSH User space

Kernel space

Hardware

UDP - TCP/IP stack

Ethernet PHY

FTP

Raw L2

NETIF interface

Ethernet device driver

Ethernet controller

AM039710

DocID028276 Rev 1 35/220

UM1942 Communication drivers

220

STMMAC core

The following paragraphs cover the configurations that the user can do to the “stmmac” core
at run-time, provide some more insights about transmission/reception data handling and
give more information about key features of the driver.

Transmit process

The Xmit method is invoked when the kernel needs to transmit a packet. It sets the
descriptors in the ring and informs the DMA engine that there is a packet ready to be
transmitted. Once the controller has finished transmitting the packet, an interrupt is triggered
so the driver will be able to release the socket buffers.

Receive process

When one or more packets are received, an interrupt is generated. The interrupts are not
queued so the driver has to scan all the descriptors in the ring during the receive process.
This is based on NAPI so the interrupt handler signals only if there is work to be done, and
the related callback is scheduled at some future point. The incoming packets are stored, by
the internal DMA controller, in a list of pre-allocated socket buffers in order to avoid using
the memcpy.

PHY interface

The following paragraphs capture few tips and tricks that developers can use when porting
to a new Ethernet physical device.

PHY abstraction layer

The physical abstraction layer provides a unified interface to a number of different physical
layer (PHY) engines. For more information please see “Documentation/networking/phy.txt”
within the kernel source tree.

PHY device driver

With the PHY abstraction layer, adding support for new PHYs is quite easy. In some cases,
no work is required at all because a generic PHY driver is already provided.

The generic driver, by default, works without any interrupts (polling mode). This means that
a timer will be used to periodically communicate between the PHY and the STMMAC in
order to check the link status.

PHY platform setup

The driver setup information comes from specific platform structures. For example,
“streamplug_devel_board.c”, as shown:

/* ethernet phy device */

static struct plat_stmmacphy_data phy_private_data = {

 .bus_id = 0,

 .phy_addr = -1,

 .phy_mask = 0,

 .interface = PHY_INTERFACE_MODE_MII,

};

static struct resource phy_resources = {

 .name = "phyirq",

 .start = -1,

Communication drivers UM1942

36/220 DocID028276 Rev 1

 .end = -1,

 .flags = IORESOURCE_IRQ,

};

struct platform_device streamplug10_phy_device = {

 .name = "stmmacphy",

 .id = -1,

 .num_resources = 1,

 .resource = &phy_resources,

 .dev.platform_data = &phy_private_data,

};

4.1.2 GMAC kernel source and configuration

Table 6 lists the “Kconfig” options available for Ethernet:

The kernel sources related to Ethernet driver implementation are present in the
“drivers/net/stmmac/” folder, which is spread across following files:

 “dwmac1000_core.c” carries GMAC core initializations

 “dwmac1000_dma.c” carries GMAC DMA initializations

 “dwmac100_core.c” carries MAC core initializations

 “dwmac100_dma.c” carries MAC DMA initializations

 “dwmac_lib.c” generic utility functions

 “enh_desc.c” enhanced descriptors handlers

 “norm_desc.c” normal descriptors handlers

 “stmmac_ethtool.c” ethtool support implementation

 “stmmac_main.c” main driver implementation

 “stmmac_mdio.c” MDIO implementation to access the PHY interface

Table 6. STreamPlug STMMAC configurations

Configuration Description

CONFIG_NET It enables networking support

CONFIG_NETDEVICES It enables network device support

CONFIG_STMMAC_ETH It enables STreamPlug Ethernet (Synopsys) support

DocID028276 Rev 1 37/220

UM1942 Communication drivers

220

4.1.3 GMAC platform configuration

The Ethernet driver expects several pieces of information from the platform. Refer to the
driver's header file in “include/linux directory”. The data structure below (included into
“arch/arm/mach-straemplug/streamplug1x.c”) provides the platform data passed to the
STMMAC driver.

/* Ethernet device registration */

struct plat_stmmacenet_data ether_platform_data = {

 .bus_id = 0,

 .has_revmii = ETH_REVMII_ADDRESS,

 .has_gmac = 1,

 .enh_desc = 1,

 .pbl = 8,

 .dev_addr = "00:80:e1:26:0a:5b",

};

while the data structure below, included into the files specific for each supported board,
provides the details of the PHY specific data passed by the platform to the driver.

/* ethernet phy device */

static struct plat_stmmacphy_data phy_private_data = {

 .bus_id = 0,

 .phy_addr = -1,

 .phy_mask = 0,

 .interface = PHY_INTERFACE_MODE_MII,

};

4.1.4 GMAC usage

The following Linux commands can be used to configure the Ethernet interface:

ifconfig

The “ifconfig” command allows the operating system to setup the network interfaces and the
user to view information about the configured interfaces.

To configure the network IP address the following command should be used:

$ ifconfig eth0 192.168.1.1 netmask 255.255.255.0

The status of the configuration can be obtained with:

$ ifconfig eth0

eth0Link encap:EthernetHWaddr 08:00:27:bd:c6:6e

inet addr:192.168.1.1 Bcast:192.168.1.255 Mask:255.255.255.0

 UP BROADCAST RUNNING MULTICASTMTU:1500Metric:1

 RX Packets:0 errors:0 dropped:0 overruns:0 frame:0

 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0
txqueuelen:32

 RX bytes:0 (0.0 B)TX bytes: 0 (0.0 B)

Communication drivers UM1942

38/220 DocID028276 Rev 1

This shuts down the interface and reactivates it:

$ ifconfig eth0 down

$ ifconfig eth0 up

To configure the MTU size:

$ ifconfig eth0 down

$ ifconfig eth0 mtu <size>

$ ifconfig eth0 up

ethtool

The “ethtool” utility is used to display or change the Ethernet card settings. To setup the auto
negotiation use:

$ ethtool -s eth0 autoneg on

To check the existing network configurations:

$ ethtool eth0

To setup the forced speed 100, the full duplex mode (default):

$ ethtool -s eth0 autoneg off speed 100 duplex full

To setup the forced speed 100, the half duplex mode:

$ ethtool -s eth0 autoneg off speed 100 duplex half

To setup the forced speed 10, the full duplex mode:

$ ethtool -s eth0 autoneg off speed 10 duplex full

4.2 Universal serial bus (USB) host

The universal serial bus (USB) is an industry standard to connect computers and electronic
devices.

Linux provides two host control drivers (Linux EHCI and Linux OHCI). The architecture
driver plugs into the USB host stack and allocates the basic resources for the USB host
controller. The host side drivers for USB devices talk to the “usbcore” APIs. There are
standard details of the API available. The details of the USB host APIs could be found online
at the following address: www.Kernel.org/doc/htmldocs/usb.html.

DocID028276 Rev 1 39/220

UM1942 Communication drivers

220

4.2.1 USB host kernel source and configuration

To ensure proper USB device support some of the options in the kernel need to be enabled.
Table 7 lists the configuration options.

Examples in this document show configuration options for basic USB support as well as the
commonly needed options, such as an USB mass storage device (most cameras and USB
Thumb® drives).

Table 7. USB host configurations

Configuration Description

CONFIG_USB_SUPPORT This option adds core support for the USB bus.

CONFIG_USB
Enable this option if the system has the host side bus and will

use USB devices. Also see the USB devices in “/proc/bus/usb”.
Enabling this option is recommended.

CONFIG_USB_DEVICES

If this option is enabled, it will get a “file/proc/bus/usb/devices”
which lists the devices currently connected to your USB bus or

buses, and a file named “/proc/bus/usb/xxx/yyy” for every
connected device, where xxx is the bus number and yyy the

device number.

CONFIG_USB_EHCI_HCD
Enable this option to configure the host controller driver to

support the USB2. EHCI is standard for USB 2.0 high speed
host control hardware.

CONFIG_USB_OHCI_HCD
Enable this option to configure the USB host controller hardware

for the OHCI specification. The OHCI is the standard for
accessing USB 1.1 host controller hardware.

CONFIG_USB_STORAGE
Enable this option to connect a USB mass storage device to the

host USB port. The option depends on SCSI support being
enabled.

CONFIG_SCSI

Enable this option to use an SCSI hard disk, an SCSI tape drive,
an SCSI CD-ROM or any other SCSI device under Linux. USB

mass storage devices follow SCSI protocol, and hence this
option should be enabled over USB mass storage devices.

CONFIG_USB_ACM
This driver supports USB modems and ISDN adapters which

support the communication device class abstract control model
interface.

CONFIG_NET Required for enabling USB modem support

CONFIG_USB_USBNET Multi-purpose USB networking framework

CONFIG_USB_NET_CDCETHER
This option supports devices conforming to the communication

device class (CDC) Ethernet control model.

CONFIG_HID_SUPPORT Options for various computer human interface device drivers.

CONFIG_HID
This option compiles into kernel the generic HID layer code
(parser, usages, etc.), which can then be used by transport-

specific HID implementation (like USB or Bluetooth®).

Communication drivers UM1942

40/220 DocID028276 Rev 1

Using the following command it is possible to configure the Linux kernel:

make menuconfig

Device Drivers--->

SCSI device support--->

(Although SCSI will be enabled automatically when selecting USB Mass
Storage,we need to enable disk support.)

---SCSI support type (disk, tape, CD-ROM)

<*>SCSI disk support

(Then Move a Level Back and Go into USB Support)

USB support--->

(This is the root hub and is required for USB support. If you'd like to
compile this as a module, it will be called usbcore.)

<*> Support for Host-side USB

(Enable this option if your system has the host side bus and wants to
use USB devices

and also to see your USB devices in /proc/bus/usb. This is recommended.)

[*]USB device filesystem

(Select at least one of the HCDs. If you are unsure, picking all is
fine.)

--- USB Host Controller Drivers

<*> EHCI HCD (USB 2.0) support

<*> OHCI HCD support

(Moving a little further down, we come to CDC and mass storage.)

<*> USB Modem (CDC ACM) support

<> USB Printer support

<*> USB Mass Storage support

For use with a USB keyboard, mouse, joystick, or any other input device, enable HID
support. Go back one level to “Device drivers” and enable HID support as shown:

Device Drivers --->

 [*] HID Devices --->

 <*>USB Human Interface Device (full HID) support

For use with a USB modem, enable the USB modem (CDC ACM) support as shown above
along with the following supports:

Device Drivers ---->

 [*] Network device support--->

 USB Network Adapters--->

 <*> Multi-Purpose USB Networking Framework

DocID028276 Rev 1 41/220

UM1942 Communication drivers

220

4.2.2 USB host platform configuration

The USB host device driver has the following platform configuration:

/* usb host device registration */

static struct resource ehci_resources[] = {

 [0] = {

 .start = STREAMPLUG1X_ICM4_USB_EHCI_BASE,

 .end = STREAMPLUG1X_ICM4_USB_EHCI_BASE + SZ_4K - 1,

 .flags = IORESOURCE_MEM,

 },

 [1] = {

 .start = STREAMPLUG1X_IRQ_HIGH_SPEED_SUBS_USB_EHCI,

 .flags = IORESOURCE_IRQ,

 },

};

static struct resource ohci_resources[] = {

 [0] = {

 .start = STREAMPLUG1X_ICM4_USB_OHCI_BASE,

 .end = STREAMPLUG1X_ICM4_USB_OHCI_BASE + SZ_4K - 1,

 .flags = IORESOURCE_MEM,

 },

 [1] = {

 .start = STREAMPLUG1X_IRQ_HIGH_SPEED_SUBS_USB_OHCI,

 .flags = IORESOURCE_IRQ,

 },

};

static u64 ehci_dmamask = ~0;

static int usbh_id = -1;

struct platform_device streamplug1x_ehci_device = {

 .name = "streamplug-ehci"

 .id = -1,

 .dev = {

 .coherent_dma_mask = ~0,

 .dma_mask = &ehci_dmamask,

 .platform_data = &usbh_id,

 },

 .num_resources = ARRAY_SIZE(ehci_resources),

 .resource = ehci_resources,

};

static u64 ohci_dmamask = ~0;

Communication drivers UM1942

42/220 DocID028276 Rev 1

struct platform_device streamplug1x_ohci_device = {

 .name = "streamplug-ohci",

 .id = 0,

 .dev = {

 .coherent_dma_mask = ~0,

 .dma_mask = &ohci_dmamask,

 .platform_data = &usbh_id,

 },

 .num_resources = ARRAY_SIZE(ohci_resources),

 .resource = ohci_resources,

};

4.2.3 USB host usage

A USB device can either use a custom driver or use one already present in the system. This
is based on the concept of a device class and means that if a device belongs to a certain
class, then the other devices of the same class can make use of the same device driver.
Some of these classes are: the USB HID (human interface devices) class which includes
input devices like keyboards and mice, the USB mass storage devices class which includes
devices like pen drives, digital cameras, audio players, etc. and the USB CDC
(communication devices class) which essentially includes USB modems and similar
devices.

To enable the USB host support at run-time it is necessary to configure the Linux kernel
command line using the options mentioned in Table 4 on page 22.

USB mass storage class

The USB mass storage standard provides an interface to a variety of storage devices, like
hard disk drives and Flash memories. Plug-in the Flash memory into the available USB port
and then type the following commands:

dmesg | less

usb 1-1: new high speed USB device using streamplug-ehci and address 2

scsi0 : usb-storage 1-1:1.0

scsi 0:0:0:0: Direct-Access USB DISK 2.0 PMAP PQ: 0 ANSI: 4

sd 0:0:0:0: Attached scsi generic sg0 type 0

sd 0:0:0:0: [sda] 15124992 512-byte logical blocks: (7.74 GB/7.21 GiB)

sd 0:0:0:0: [sda] Write Protect is off

sd 0:0:0:0: [sda] Mode Sense: 23 00 00 00

sd 0:0:0:0: [sda] Assuming drive cache: write through

sd 0:0:0:0: [sda] Assuming drive cache: write through

 sda: sda1

sd 0:0:0:0: [sda] Assuming drive cache: write through

sd 0:0:0:0: [sda] Attached SCSI removable disk

mount /dev/sda1 /mnt/

df -h

DocID028276 Rev 1 43/220

UM1942 Communication drivers

220

Filesystem Size Used Available Use% Mounted on

ubi0_0 7.8M 3.5M 4.3M 45% /

tmpfs 51.0M 32.0K 50.9M 0% /tmp

/dev/sda1 7.2G 5.8G 1.4G 80% /mnt

/* Digital cameras can be accessed the same way as memory sticks. */

The device is picked up as a USB 1.1 device and allocates an address. It also indicated
which HCD is used.

USB communication device class (CDC)

The USB CDC class supports a lot of communication devices, including Ethernet. Compile
and then boot-up the kernel with the options relevant to the USB Ethernet adapters enabled.
The options are covered in the following configuration sections. Plug-in the USB Ethernet
adapter, and console messages that are similar to the following will be displayed.

$hub 1-0:1.0: over-current change on prot 1

usb 1-1:new high speed USB device using streamplug-ehci and address 2
usb-1.1: configuration #1 chosen from 1 choice

eth0:register 'asix' at usb-STreamPlug EHCI-1, ASIX AX88772 USB2.0

Ethernet,00;89:c8:3a:4c:0b

/* Type in the following command and check if the device has been
recognized */

$ cat /proc/bus/usb/devices

 T: Bus=01 Lev=01 Prnt=01 Port=00 Cnt=01 Dev#= 2 Spd=480 MxCh= 0

 D: Ver= 2.00 Cls=ff(vendor)Sub=ff Prot=00 MxPS= 64 #Cfgs= 1

 P: Vendor=2001 ProdID=3c05 Rev= 0.01

 S: Manufacturer= D-Link Corporation

 S: Product=DUB-E100

 S: Serial Number=000001

 C:* #Ifs= 1 Cfg#= 1 Atr=80 MxPwr=250mA

 I: If#= 0 Alt= 0 #EPs= 3 Cls=ff(vendor specific) Sub=ff Prot=00
Driver=asix

 E: Ad=82(I) Atr=03(Int.) MxPS= 8 Ivl=128ms E: Ad=81(I) Atr=02(Bulk)
MxPS= 512 Ivl=0ms

 E: Ad=03(O) Atr=02(Bulk) MxPS= 512 Ivl=0ms

/* The functionality could be checked by assigning the IP and then test
a simple ping operation. */

$ ifconfig eth0 192.168.1.11

eth0: link up, 100Mbps, full duplex, lpa 0xcde1

th0: linkup, 100Mbps, full-duplex, lpa 0xcde1

USB human interface device (HID) class

The USB HID class describes human interface devices such as keyboards and mice.

Communication drivers UM1942

44/220 DocID028276 Rev 1

USB mouse

Compile and then boot-up the kernel with the options relevant to the USB mouse enabled.
The options are shown in the configuration following paragraphs. Plug-in the USB mouse.
Print output messages that are similar to the following will be displayed:

$ hub 1-0:1.0: over-current change on prot 1

usb 3-1:new low speed USB device using streamplug-ohci and address 3
usb-3.1: configuration #1 chosen from 1 choice

input: USB Optical Mouse as /class/input/input2

input: USB HID v1.11 Mouse[USB Optical Mouse] on usb-streamplug-ohci.0-
1

The following command can be used to check if the device has been recognized:

$ cat /proc/bus/usb/devices

T: Bus=03 Lev=01 Prnt=01 Port=00 Cnt=01 Dev#= 3 Spd=1.5 MxCh= 0

D: Ver= 2.00 Cls=00(>ifc) Sub=00 Prot=00 MxPS= 8 #Cfgs= 1

P: Vendor=0461 ProdID=4d15 Rev= 2.00

S: Product=USB Optical Mouse

C:* #Ifs= 1 Cfg#= 1 Atr=a0 MxPwr=100mA

I:* If#= 0 Alt= 0 #EPs= 1 Cls=03(HID) Sub=01 Prot=02 Driver=usbhid

E: Ad=81(I) Atr=03(Int.) MxPS=4 Ivl=10ms

USB keyboard

Compile and then boot-up the kernel with the options relevant to the USB keyboard
enabled. The options are included in the following configuration paragraphs. Plug-in the
USB keyboard. Print output messages that are similar to the following will be displayed.

$ hub 1-0:1.0: over-current change on prot 1

usb 3-1:new full speed USB device using streamplug-ohci and address 4
usb-3.1: configuration #1 chosen from 1 choice

input: Dell Dell Smart Card Reader Keyboard as /class/input/input3

input: USB HID v1.11 Keyboard [Dell Dell Smart Card Reader Keyoard]
on usb- streamplug-ohci.0-1

$cat /proc/bus/usb/devices

T: Bus=03 Lev=01 Prnt=01 Port=00 Cnt=01 Dev#= 4 Spd=12 MxCh= 0

D: Ver= 2.00 Cls=00(>ifc) Sub=00 Prot=00 MxPS= 8 #Cfgs= 1

P: Vendor=413c ProdID=2101 Rev= 1.00

S: Manufacturer=Dell

S: Product=Dell Smart Card Reader Keyboard

C:* #Ifs= 2 Cfg#= 1 Atr=a0 MxPwr=100mA

I:* If#= 0 Alt= 0 #EPs= 1 Cls=03(HID) Sub=01 Prot=01 Driver=usbhid

E: Ad=81(I) Atr=03(Int.) MxPS=8 Ivl=24ms

I:* If#= 1 Alt= 0 #EPs= 3 Cls=0b(scard) Sub=00 Prot=00
Driver=(none)

E: Ad=02(O) Atr=02(Bulk) MxPS=64 Ivl=0ms

E: Ad=82(I) Atr=02(Bulk) MxPS=64 Ivl=0ms

E: Ad=83(I) Atr=03(Int.) MxPS=8 Ivl=24ms

DocID028276 Rev 1 45/220

UM1942 Communication drivers

220

A simple method to verify if the STreamPlug chip is working as a USB host is to plug a USB
mass storage device that has been formatted as FAT32, into the USB socket and verify from
the kernel debug shell that USB signals are exchanged between the host and external
device.

A portion of the Linux kernel log generated after the USB host device driver recognized the
USB device is shown below.

usb 1-1: new high speed USB device using streamplug-ehci and address 2
scsi0 : usb-storage 1-1:1.0

scsi 0:0:0:0: Direct-AccessVBTMStore 'n' Go5.00 PQ: 0 ANSI: 0 CCS

sd 0:0:0:0: Attached scsi generic sg0 type 0

sd 0:0:0:0: [sda] 4028416 512-byte logical blocks: (2.06 GB/1.92 GiB)

sd 0:0:0:0: [sda] Write Protect is off

sd 0:0:0:0: [sda] Assuming drive cache: write through sd 0:0:0:0: [sda]
Assuming drive cache: write through

 sda:

sd 0:0:0:0: [sda] Assuming drive cache: write through sd 0:0:0:0: [sda]
Attached SCSI removable disk

After the USB device is recognized, the user may use the command mount to mount the
filesystem (/dev/sd##) in the “folder /mnt”.

$ mount /dev/sda1 /mnt

Going into “/mnt” will show the filesystem which is on “/dev/sda1”:

$ ls /mnt

4.3 Universal serial bus (USB) device

The STreamPlug USB chip controller may run either as a USB host (master) or as a USB
device (slave) and the mutually exclusive selection is done during the startup of the board.

There is a wide variety of USB devices (USBD) available in the market. Examples of these
devices are USB Ethernet adapters, USB audio devices, USB mass storage devices, USB
printers, and so on. In the Linux USB world, these functions are called “gadgets”. The
STreamPlug USBD can be used to build any of these functions. A device with multiple
functions can also be built. Multifunctional printers, USB Ethernet plus mass storage are
examples. These devices are generally known as “composite” devices.

Communication drivers UM1942

46/220 DocID028276 Rev 1

4.3.1 USB device software overview

The USB device controller driver in the STreamPlug LSP supports the Linux USB gadget
framework. This framework provides a flexible and easy interface for adding different USB
slave devices. It also offers the facility to easily add multifunction USB composite devices.

Figure 4 shows the USB gadget framework most important components.

Figure 4. USBD software architecture

As shown in Figure 4, the gadget drivers can access the USB device driver either directly
through the gadget framework or through the composite layer. The composite layer provides
an interface where multifunctional devices (like audio and video) can be easily supported. It
is preferable that USB gadget drivers which do not have composite features also interact
through the composite layer. Please note that only one gadget driver at a time can exist in
this framework using the gadget framework. Also remember that the composite layer is in an
itself gadget drive. Therefore according to Figure 4, the printer and the composite layer
cannot exist at the same time. One possibility is to build the printer gadget over the
composite layer.

The remaining part of this document describes the composite layer interface. For detailed
documentation on the gadget framework please refer to: www.linux-usb.org/gadget/.

mount

Ethernet
(usb0)

Ip User space

Kernel space

Hardware

ipconfig

Composite device

USB gadget framework

USBD controller

File storage Printer

USBD driver

AM039711

DocID028276 Rev 1 47/220

UM1942 Communication drivers

220

4.3.2 USB device kernel source and configuration

The following files contain some of the source code part of the STreamPlug device driver for
the USB gadget controller:

arch/arm/mach-streamplug/ipswrst_ctrl.c

arch/arm/mach-streamplug/include/mach/generic.h

arch/arm/mach-streamplug/include/mach/streamplug10.h

arch/arm/mach-streamplug/clock.c

arch/arm/mach-streamplug/padmux.c

arch/arm/mach-streamplug/streamplug1x.c

drivers/usb/gadget/designware_udc.h

drivers/usb/gadget/designware_udc.c

drivers/usb/gadget/inode.c

drivers/usb/gadget/zero.c.

The USB gadgets device driver is built into the following modules:

g_zero.ko

g_ether.ko

gadgetfs.ko

4.3.3 USB device platform configuration

A partial list of Linux kernel configuration options useful to configure the USB controller is
present in Table 8.

Table 8. USB gadget Linux kernel configuration

Configuration Description

CONFIG_USB -

CONFIG_USB_SUPPORT -

CONFIG_USB_DEVICE_CLASS -

CONFIG_USB_GADGET This enables USB gadget support in Linux kernel

CONFIG_USB_GADGETFS -

CONFIG_USB_ZERO This enables a test gadget driver (“zero”)

CONFIG_USB_ETH -

CONFIG_USB_GADGET_DESIGNWARE This enables STreamPlug USB device controller support

CONFIG_USB_DESIGNWARE -

CONFIG_USB_TEST
This enables the USB test module for testing the zero

gadget on the host side.

CONFIG_USB_GADGET_DUALSPEED This enables dual (FULL and HIGH) speed support.

Communication drivers UM1942

48/220 DocID028276 Rev 1

Other may be necessary and/or more fine-grained configurations may be needed by directly
changing the source code. One of these cases is related to the FIFO configurations. The
RxFIFO on the STreamPlug USBD can be configured for each endpoint. Keep in mind that
total combined RxFIFO usage for all out endpoints should not exceed 2 KB. Similarly, total
combined TxFIFO usage for all IN endpoints should be limited to 2 KB. To change this FIFO
configuration, it is possible to edit the corresponding macro in the source code file.

An example is the configuration of the buffer length. The gadget drivers allocate a USB
request and then submit it to the framework for transfer. The length of such transfer
requests will determine the performance of the driver. Allocating a large buffer and hence
a bigger buffer length will make CPU more free. The USB DMA would try to complete the
transfer for the asked length and then interrupt CPU notifying the completion of the transfer.

The maximum buffer length is limited to 65535 bytes for an STreamPlug USB device.

USBD driver interface with Linux gadget layer

As mentioned above, the USB device controller driver supports the Linux gadget framework.
For this, it exports certain device, endpoint specific routines and two functions for registering
and unregistering to the framework.

/* device specific operations exported by usbd driver */

static const struct usb_gadget_ops dw_udc_dev_ops = {

 .get_frame = dw_dev_get_frame,

 .wakeup = dw_dev_wakeup,

 .set_selfpowered = dw_set_selfpowered,

 .ioctl = dw_ioctl,

};

/* endpoint specific operations exported by usbd driver */

static struct usb_ep_ops dw_udc_ep_ops = {

 .enable = dw_ep_enable,

 .disable = dw_ep_disable,

 .alloc_request = dw_ep_alloc_request,

 .free_request = dw_ep_free_request,

 .queue = dw_ep_queue,

 .dequeue = dw_ep_dequeue,

 .set_halt = dw_ep_set_halt,

 .fifo_status = dw_ep_fifo_status,

 .fifo_flush = dw_ep_fifo_flush,

};

/* routine exported by usbd driver for gadgets to register */

int usb_gadget_register_driver(struct usb_gadget_driver *driver);

/* routine exported by usbd driver for gadgets to un-register */

int usb_gadget_unregister_driver(struct usb_gadget_driver *driver);

The composite device layer registers to the gadget framework by calling the above APIs and
exposes an interface which can be used by different functions (gadgets) to represent
a composite device.

DocID028276 Rev 1 49/220

UM1942 Communication drivers

220

4.3.4 USB device usage

The composite device is designed in a such way that, the driver should first register to the
composite layer. During registration, it passes some of the device related details
(e.g.: device, string descriptor) to the composite layer. After registering, the composite
device needs to add a configuration (multiple configurations are also possible) and then
individual functions can add their interfaces. Figure 5 shows a simple gadget driver (“zero
gadget”) available with the STreamPlug LSP.

Figure 5. Zero gadget device

The illustrated gadget driver is built over a composite layer (although it is not a composite
device) and is mainly used for testing the USB device controller. It provides two
configurations: the first one has a source/sink function for generating/consuming USB
packets, and the second one has a loop back feature. This example gadget driver is referred
to the explanations given throughout this part of the document.

This driver can be found in the file:

linux/drivers/usb/gadget/zero.c.

Zero gadget device

Source/sink config.

Out

endpoint

In

endpoint

Loop back config.

Interface 0

Out

endpoint

In

endpoint

Interface 0

Function 1 Function 1

AM039712

Communication drivers UM1942

50/220 DocID028276 Rev 1

Registering to the composite device

The un/registration to the composite device can be done with the following calls:

/* usb composite gadget need to fill following structure */

static struct usb_composite_driver zero_driver = {

 .name = "zero";

 .dev = &device_desc;

 .strings = dev_strings;

 .bind = zero_bind; /* callback called on successful registration */

 .unbind= zero_unbind,

 .suspend= zero_suspend,

 .resume= zero_resume,

};

/* Following are the APIs for register/un-register */
usb_composite_register(&zero_driver);
usb_composite_unregister(&zero_driver);

Adding configuration

Any composite device can have multiple configurations with multiple interfaces, each
interface (or a group of interfaces) representing a unique function. The following API can be
used to add a configuration:

static struct usb_configuration sourcesink_driver = {

 .label = "source/sink",

 .strings = sourcesink_strings,

 .bind= sourcesink_bind_config, /* callback called during registration
to finish other configurations */

 .setup = sourcesink_setup, /* callback to handle control requests */

 .bConfigurationValue = 3,

 .bmAttributes = USB_CONFIG_ATT_SELFPOWER,

 };

/* following function registered earlier, is called during registration */

static int init zero_bind(struct usb_composite_dev *cdev)

{

 ...

 usb_add_config(cdev, &sourcesink_driver);

 ...

}

DocID028276 Rev 1 51/220

UM1942 Communication drivers

220

Adding function

After adding configurations, the functions supported in each configuration need to be
defined. Several functions as per the composite device design, can be added. The following
mechanism can be used to add functions to configurations:

/* Following function registered earlier is called during registration */

static int sourcesink_bind_config(struct usb_configuration *c)

{

 struct f_sourcesink*ss;

 intstatus;

 ss = kzalloc(sizeof *ss, GFP_KERNEL);

 if (!ss)

 return -ENOMEM;

 ss->function.name = "source/sink";

 ss->function.descriptors = fs_source_sink_descs;

 ss->function.bind = sourcesink_bind;

 ss->function.unbind = sourcesink_unbind;

 ss->function.set_alt = sourcesink_set_alt;

 ss->function.disable = sourcesink_disable;

 status = usb_add_function(c, &ss->function);

 if (status)

 kfree(ss);

 return status;

}

Initializing USB descriptors

There are some fields in standard USB descriptors that require inputs from the composite
layer for initialization. In almost all descriptors some of these fields are indexed to string
tables and to an interface number for the interface descriptors. Some helper routines are
described below:

static int zero_bind(struct usb_composite_dev *cdev)

{

 /* get next available string index */

 id = usb_string_id(cdev);

 if (id < 0)

 return id;

 strings_dev[STRING_MANUFACTURER_IDX].id = id;

 device_desc.iManufacturer = id;

 ...

}

static int sourcesink_bind(struct usb_configuration *c, struct
usb_function *f)

{

 ...

Communication drivers UM1942

52/220 DocID028276 Rev 1

 /* allocate interface ID(s) */

 id = usb_interface_id(c, f);

 if (id < 0)

 return id;

 source_sink_intf.bInterfaceNumber = id;

 ...

}

Data and control transfer

After completing the registering process, the gadget driver can handle setup requests
through setup callbacks. In this way, other required endpoints can be configured and
a transfer (of control or data) through the Linux gadget framework APIs can be initiated.
More details on these APIs can be found in the references. Table 9 summarizes these APIs
and their purpose.

Table 9. Linux gadget framework API

Function Description

struct usb_ep *usb_ep_autoconfig(struct
usb_gadget *,struct usb_endpoint descriptor *)

Allocates a suitable free endpoint described by
struct usb_endpoint_descriptor.

int usb_ep_enable(struct usb_ep *ep, const
struct usb_endpoint_descriptor *desc)

Enables the endpoint ep, in order to be used for
data transfer. The endpoint ep is described in

struct usb_endpoint_descriptor.

struct usb_request *usb_ep_alloc_request(struct
usb_ep *ep, gfp_t gfp_flags)

Allocates a request for USB transfer.

void usb_ep_free_request(struct usb_ep *ep,
struct usb_request *req)

Frees the allocated request.

int usb_ep_disable(struct usb_ep *ep) Disables the endpoint ep, so that it is not usable.

int usb_ep_queue(struct usb_ep *ep, struct
usb_request *req, gfp_t gfp_flags)

Submits a transfer request on this endpoint (ep).

int usb_ep_set_halt(struct usb_ep *ep) Halts a particular endpoint (ep).

DocID028276 Rev 1 53/220

UM1942 Communication drivers

220

USBD control

The APIs in Table 10 may be used to configure and program the USB device.

4.3.5 USB platform configuration

The STreamPlug USB gadget device driver manages the resources shown in the following
code:

/* usb device registration */

static struct resource udc_resources[] = {

 [0] = {

 .start = STREAMPLUG1X_ICM4_USBD_CSR_BASE,

 .end = STREAMPLUG1X_ICM4_USBD_CSR_BASE + SZ_4K - 1,

 .flags = IORESOURCE_MEM,

 },

 [1] = {

 .start = STREAMPLUG1X_ICM4_USB_PLDT_BASE,

 .end = STREAMPLUG1X_ICM4_USB_PLDT_BASE + SZ_4K - 1,

 .flags = IORESOURCE_MEM,

 },

 [3] = {

 .start = STREAMPLUG1X_IRQ_HIGH_SPEED_SUBS_USB_DEV,

 .end = STREAMPLUG1X_IRQ_HIGH_SPEED_SUBS_USB_DEV,

 .flags = IORESOURCE_IRQ,

 },

};

struct platform_device streamplug1x_udc_device = {

 .name = "designware_udc",

 .id = -1,

 .dev = {

Table 10. USB device control APIs

Function Description

int usb_gadget_frame_number

(struct usb_gadget *gadget)

Returns the current start of the frame number int
usb_gadget_wakeup (struct usb_gadget enables

the remote wakeup feature of USB *gadget)
device.

int usb_gadget_set_selfpowered

(struct usb_gadget *gadget)
The USB device is self-powered.

int usb_gadget_clear_selfpowered

(struct usb_gadget *gadget)
The USB device is not self-powered but bus

powered.

int usb_gadget_ioctl

(struct usb_gadget *,unsigned code, unsigned
long param)

Configures the USB device on configuration
change. This API is STreamPlug specific and is

mandatory to call on SET CONFIGURATION as it
programs the controller accordingly “param”

points to the function descriptors.

Communication drivers UM1942

54/220 DocID028276 Rev 1

 .coherent_dma_mask = 0xffffffff,

 },

 .num_resources = ARRAY_SIZE(udc_resources),

 .resource = udc_resources,

};

4.3.6 USB platform usage

As shown above, there can be various user defined functions over the Linux gadget
framework. Each of the functions (gadgets) exposes its own interface. For example, the
USB Ethernet function exposes a netdev interface; the USB serial gadget exposes a tty
interface and so on. This makes the usage of the USB gadgets very easy. Standard tools
can be used for standard interfaces provided by these gadgets. The following files present
in the Linux kernel documentation folder provide some usage examples:

* gadget_printer.txt for usb printer device

* gadget_serial.txt for usb serial device

The STreamPlug LSP provides a test gadget driver, “zero gadget”, to test the USB device
controller. This gadget does not have any user interface. It just provides two configurations,
“source and sink” and “loop back”, to support several test cases which can be executed
from the USB host side. On the USB host corresponding to the zero gadget the “usbtest”
driver supports several test cases to validate the USB through IOCTLs. A standard
application “testusb” is available on the host side to execute desired test cases.

Please refer to the following link for details on this test setup: http://www.linux-
usb.org/usbtest/, includes the binary image and the source code of an application to test the
USB device gadget file system.

To enable the USB gadget device driver it is necessary to use the following Linux kernel
parameter:

usb=on:device

in the XML configuration file for the OK Linux.

USB device Ethernet gadget

A simple application that can be performed in order to verify the functionality of the
STreamPlug chip working as a USB device with the Ethernet gadget enabled is to try to
establish a network communication with a remote machine such as it happens with the
Ethernet “Best Effort” device driver. The application used is “iperf” which is provided as
a Buildroot package.

In order to run the test, perform the following steps:

1. On the STreamPlug side, load the Ethernet gadget module:

$ modprobe g_ether.ko

g_ether gadget: using random self ethernet address g_ether gadget: using
random host ethernet address usb0: MAC 4e:23:fc:67:21:49

usb0: HOST MAC 16:a6:02:7c:6c:53

g_ether gadget: Designware USB Device Controller driver, version:
Memorial Day 2008 g_ether gadget: g_ether ready

registered gadget driver 'g_ether'

2. Assign an IP address to the usb0 interface. For example:

$ ifconfig usb0 192.168.3.1 up

http://www.linux-usb.org/usbtest/

DocID028276 Rev 1 55/220

UM1942 Communication drivers

220

ADDRCONF(NETDEV_UP): usb0: link is not ready

On the host PC side:

1. Connect a USB cable.

[on STreamPlug console]:

g_ether gadget: high speed config #1: CDC Ethernet (EEM)
ADDRCONF(NETDEV_CHANGE): usb0: link becomes ready

2. Verify that the usb0 device is detected.

[on Host PC terminal]:

$ ifconfig usb0

usb0 Link encap:Ethernet HWaddr 96:f1:78:09:8e:53

inet6 addr: fe80::94f1:78ff:fe09:8e53/64 Scope:Link

UP BROADCAST RUNNING MULTICAST MTU:1494 Metric:1

RX packets:6 errors:0 dropped:0 overruns:0 frame:0

TX packets:26 errors:0 dropped:0 overruns:0 carrier:0 collisions:0
txqueuelen:1000

RX bytes:384 (384.0 B) TX bytes:5713 (5.7 KB)

3. Assign an IP address to the usb0 interface. For example:

$ sudo ifconfig usb0 192.168.3.10 up

4. Check if the connection is up and running using the ping command on both sides.

On the STreamPlug side:

$ ping -c4 192.168.3.10

PING 192.168.3.10 (192.168.3.10): 56 data bytes

64 bytes from 192.168.3.10: seq=0 ttl=64 time=14.405 ms

64 bytes from 192.168.3.10: seq=1 ttl=64 time=4.534 ms

64 bytes from 192.168.3.10: seq=2 ttl=64 time=12.234 ms

64 bytes from 192.168.3.10: seq=3 ttl=64 time=20.256 ms

--- 192.168.3.10 ping statistics ---

4 packets transmitted, 4 packets received, 0% packet loss round-trip
min/avg/max = 4.534/12.857/20.256 ms

On the host PC side:

$ping -c4 192.168.3.1

PING 192.168.3.1 (192.168.3.1) 56(84) bytes of data.

64 bytes from 192.168.3.1: icmp_req=1 ttl=64 time=15.0 ms

64 bytes from 192.168.3.1: icmp_req=2 ttl=64 time=31.2 ms

64 bytes from 192.168.3.1: icmp_req=3 ttl=64 time=6.29 ms

64 bytes from 192.168.3.1: icmp_req=4 ttl=64 time=21.4 ms

--- 192.168.3.1 ping statistics ---

4 packets transmitted, 4 received, 0% packet loss, time 3004ms rtt
min/avg/max/mdev = 6.290/18.482/31.220/9.106 ms

Finally, the “iperf” application may be used to evaluate the link bandwidth.

On the host PC side:

$iperf -s

Communication drivers UM1942

56/220 DocID028276 Rev 1

On the STreamPlug side:

$iperf -c 192.168.3.10

The STreamPlug console will display:

--

Client connecting to 192.168.3.10, TCP port 5001

TCP window size: 16.0 KByte (default)

--

[3] local 192.168.3.1 port 54883 connected with 192.168.3.10 port 5001

[ID] Interval Transfer Bandwidth

[3] 0.0-10.1 sec 14.0 MBytes 11.6 Mbits/sec

The output logs on the host PC side will show:

--

Server listening on TCP port 5001

TCP window size: 85.3 KByte (default)

--

[4] local 192.168.3.10 port 5001 connected with 192.168.3.1 port 54883

[ID] Interval Transfer Bandwidth

[4] 0.0-10.2 sec 14.0 MBytes 11.5 Mbits/sec

The following is an example of console output while doing a gadget Ethernet
test:

STreamPlug login: root

modprobe g_ether

g_ether gadget: using random self ethernet address g_ether gadget: using
random host ethernet address usb0: MAC 9a:98:08:e8:69:91

usb0: HOST MAC 4a:61:f9:f4:cf:ed

g_ether gadget: Designware USB Device Controller driver, version:
Memorial Day 2008 g_ether gadget: g_ether ready

registered gadget driver 'g_ether'

ifconfig

ifconfig usb0 192.168.3.1 up

ifconfig

usb0 Link encap:Ethernet HWaddr 9A:98:08:E8:69:91

inet addr:192.168.3.1 Bcast:192.168.3.255 Mask:255.255.255.0

inet6 addr: fe80::9898:8ff:fee8:6991/64 Scope:Link

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

RX packets:68 errors:0 dropped:0 overruns:0 frame:0

TX packets:6 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:1000

RX bytes:11947 (11.6 KiB) TX bytes:504 (504.0 B)

ping 192.168.3.2

PING 192.168.3.2 (192.168.3.2): 56 data bytes

64 bytes from 192.168.3.2: seq=0 ttl=64 time=3.520 ms

DocID028276 Rev 1 57/220

UM1942 Communication drivers

220

64 bytes from 192.168.3.2: seq=1 ttl=64 time=0.654 ms

64 bytes from 192.168.3.2: seq=2 ttl=64 time=0.660 ms

64 bytes from 192.168.3.2: seq=3 ttl=64 time=0.656 ms

64 bytes from 192.168.3.2: seq=4 ttl=64 time=0.660 ms

64 bytes from 192.168.3.2: seq=5 ttl=64 time=0.645 ms

64 bytes from 192.168.3.2: seq=6 ttl=64 time=0.664 ms

64 bytes from 192.168.3.2: seq=7 ttl=64 time=0.628 ms

64 bytes from 192.168.3.2: seq=8 ttl=64 time=0.645 ms

--- 192.168.3.2 ping statistics ---

9 packets transmitted, 9 packets received, 0% packet loss round-trip
min/avg/max = 0.628/0.970/3.520 ms

iperf -c 192.168.3.2

-- Client
connecting to 192.168.3.2, TCP port 5001

TCP window size: 16.0 KByte (default)

--

[3] local 192.168.3.1 port 34838 connected with 192.168.3.2 port 5001
[ID] Interval Transfer Bandwidth

[3] 0.0-10.0 sec 34.6 MBytes 29.0 Mbits/sec

rmmod g_ether

USB gadget FS

In order to test the USB device FS gadget, Run, on the STreamPlug, the application
“gadgetfs” which may be found at the root level of the root FS “below/examples” folder.

Note: The host PC must have a Linux OS running, with a VM the test will not run.

1. Load the gadget FS module.

$ modprobe gadgetfs.ko

2. Verify the subfolder /gadget is present below the “/dev” folder, otherwise create it.

3. Mount the gadget FS module. Note that the message shows the driver is not
associated anymore because the cable is not connected.

$ mount -t gadgetfs none /dev/gadget/

bind to driver nop --> error -120

4. Verify if the “designware_udc” device driver is correctly mounted and it is created below
/dev/gadget.

5. Verify the USB cable is plugged on an appropriate connector only at the STreamPlug
side.

6. Go into the “/example/gadgetfs” folder and run the application in background.

$./gadgetfs -v &

7. Verify it will display the following string:

$ /dev/gadget/designware_udc ep0 configured

$ serial="bvxryq1ex7ue0nw2yod9m9t5y2sib8939wzx4lo4y8g4h3m27peuxq1qi1z4p82"

Communication drivers UM1942

58/220 DocID028276 Rev 1

Below the “/dev/gadget”, are the endpoints created ep1in, ep2out, ep3in:

8. Connect the cable to the PC USB connector.

9. On the host side, execute the command lsusb both as the normal user and superuser.
Note that the host has correctly detected the USB device.

$ lsusb

Bus 005 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub

Bus 004 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub

Bus 001 Device 002: ID 0525:a4a4 Netchip Technology, Inc. OKLinux-USB
user-mode bulk?' source/sink

Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

Bus 002 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub

Bus 006 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub

Bus 003 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub

$ sudo lsusb -v -s1:2

Bus 001 Device 002: ID 0525:a4a4 Netchip Technology, Inc. Linux-USB
user-mode bulk? source/sink

Device Descriptor:

bLength 18

bDescriptorType 1

bcdUSB2.00

bDeviceClass255 Vendor Specific Class

bDeviceSubClass 0

bDeviceProtocol 0

bMaxPacketSize0 64

idVendor0x0525 Netchip Technology, Inc.

idProduct0xa4a4 Linux-USB user-mode bulk source/sink

bcdDevice1.08

iManufacturer1 Analog Devices, Inc.

iProduct2 EZKIT-BF548

iSerial3 bNumConfigurations 1

Configuration Descriptor:

bLength 9

bDescriptorType 2

wTotalLength 39

bNumInterfaces 1

bConfigurationValue 3

iConfiguration4

GadgetFS Configuration bmAttributes0xc0

Self Powered

MaxPower 2mA

Device Qualifier (for other device speed):

bLength 10

bDescriptorType 6

bcdUSB2.00

bDeviceClass255 Vendor Specific Class

DocID028276 Rev 1 59/220

UM1942 Communication drivers

220

bDeviceSubClass 0

bDeviceProtocol 0

bMaxPacketSize0 64

bNumConfigurations 1

Device Status: 0x0000 (Bus Powered)

10. On STreamPlug side, check that it will be displayed something like the following:

SUSPEND

CONNECT high speed

DISCONNECT

CONNECT high speed

SETUP 80.06 v0300 i0000 255

SETUP 80.06 v0302 i0409 255

SETUP 80.06 v0301 i0409 255

SETUP 80.06 v0303 i0409 255

SETUP 80.06 v0303 i0409 2

SETUP 80.06 v0303 i0409 128

4.4 I2C controller

The I2C is a multimaster serial single-ended 2-wire computer bus invented by Philips. It is
used to attach low speed peripherals to a motherboard, embedded system, cellphone, or an
other electronic device. It is a master-slave protocol, where communication takes a place
between a host adapter (or a host controller) and client devices (or slaves).

4.4.1 I2C controller hardware overview

The I2C uses only two bidirectional lines, the serial data (SDA) and serial clock (SCL),
pulled up with resistors. Typical voltages used are +5 V or +3.3 V, but systems with higher or
lower voltages are also permitted. The I2C controller serves as an interface between the
APB bus and the serial I2C bus. It provides master functions and controls all the I2C bus
specific sequencing, protocol, arbitration and timing.

Features supported by I2C are:

 Two-wire I2C serial interface

 Two speeds:

– Standard mode (100 Kbits/s)

– Fast mode (400 Kbits/s)

 Master or slave I2C operation (LSP supports only the master mode)

 7-bit or 10-bit addressing

 Slave bulk transfer mode

 Interrupt or polled-mode operation (LSP supports only the interrupt mode)

Communication drivers UM1942

60/220 DocID028276 Rev 1

4.4.2 I2C controller software overview

Because the I2C works on the master/slave protocol, the communication takes a place
between the host adapter (master) and client devices (slave).

The following terms are used for the I2C:

Bus

 Algorithm driver

 Adapter driver

Device

 Client driver

An algorithm driver contains the general code that can be used for the whole class of I2C
adapters. Each specific adapter driver either depends on one algorithm driver, or includes
its own implementation.

A client driver contains the general code to access some type of a device. Each detected
device gets its own data in the client structure.

For a given configuration, it will need:

 A driver for the I2C bus,

 Drivers for I2C devices (usually one driver for each device), like the EEPROM, image
sensor, etc.

Figure 6 illustrates the Linux I2C subsystem.

Figure 6. I2C framework architecture

User application

I2C client driver

User space

Kernel space

Hardware

I2C core layer

I2C controller H/W

I2C dev

I2C controller driver

AM039713

DocID028276 Rev 1 61/220

UM1942 Communication drivers

220

4.4.3 I2C controller kernel source and configuration

The I2C kernel code is broken up into a number of logical blocks: the I2C core, I2C bus
drivers and I2C client drivers.

I2C core

The I2C core is a code base consisting of routines and data structures available to host
adapter drivers and client drivers. The core also provides a level of indirection that renders
client drivers independent of the host adapter, allowing them to work even if the client device
is used on a board that has a different I2C host adapter.

Busses

Busses are used for reading/writing to the slave device. The I2C busses drivers are provided
in the following path: “drivers/i2c/busses/i2c-designware.c”.

I2C-dev

The I2C-dev allows communication with the user space. The I2C-dev code is provided in the
following path: “drivers/i2c/i2c-dev.c”.

Table 11 lists the details corresponding to the layout of kernel configuration:

4.4.4 I2C controller platform configuration

The optional platform data passed from machines for the I2C is as follows:

/* i2c device registration */

static struct resource i2c_resources[] = {

 {

 .start = STREAMPLUG1X_ICM1_I2C_BASE,

 .end = STREAMPLUG1X_ICM1_I2C_BASE + SZ_4K - 1,

 .flags = IORESOURCE_MEM,

 }, {

 .start = STREAMPLUG1X_IRQ_LOW_SPEED_SUBS_I2C,

 .flags = IORESOURCE_IRQ,

 },

};

struct platform_device streamplug1x_i2c_device = {

 .name = "i2c_designware",

Table 11. I2C configurations

Configuration Description

CONFIG_I2C It enables I2C support

CONFIG_I2C_CHARDEV
It provides a character device for each I2C device present in the system, allowing

the user to read and write directly from the I2C bus by ioctl() function.

CONFIG_I2C_DESIGNWARE
It enables the Synopsys designware I2C adapter (I2C hardware bus support).

Only the master mode is supported.

CONFIG_I2C_HELPER_AUTO
It enables the “I2C algorithm” modules. These are basically software only

abstractions of generic I2C interfaces.

Communication drivers UM1942

62/220 DocID028276 Rev 1

 .id = 0,

 .dev = {

 .coherent_dma_mask = ~0,

},

 .num_resources = ARRAY_SIZE(i2c_resources),

 .resource = i2c_resources,

};

4.4.5 I2C controller usage

To enable the I2C support at run-time it is necessary to configure the Linux kernel command
line using one of the options listed in Table 4 on page 22.

Access from user space

Usually, I2C devices are controlled by a kernel driver. But all devices on an adapter can be
accessed from the user space, through the “/dev” interface, by loading the module “i2c-dev”.

Each registered I2C adapter gets an integer number, counting from zero (0). One can
examine “/sys/class/i2c-dev/” to see what number corresponds to which adapter. The I2C
device files are character device files with a major device number 89 and a minor device
number corresponding to the number assigned as explained above. They should be called
“i2c-%d” (i2c-0, i2c-1, . . . , i2c-10, . . .).

All 256 minor device numbers are reserved for “i2c”.

To access an I2C adapter from a C program, for example: “#include <linux/i2c-dev.h>”.

Note that there are two files named “i2c-dev.h” . One is distributed with the Linux kernel and
is meant to be included from the kernel driver code, the other one is distributed with “i2c-
tools” and is meant to be included from user space programs.

After deciding which adapter to access, inspect “/sys/class/i2c-dev/”. Adapter numbers are
assigned somewhat dynamically, few assumptions about them can be made. They can even
change from one boot to the next.

Next thing, open the device file, as follows:

#define DEVICE_FILE_NAME_I2C "/dev/i2c-0"

int fd;

fd = open(DEVICE_FILE_NAME_I2C, O_RDWR);

if (fd < 0) {

 fprintf(stderr, "FAILED OPEN Device i2c-0. Ret=%d\n", fd);

 close(fd);

 exit(-1);

}

After the device is opened, specify the device address with which to communicate:

/* The I2C address */

#define I2C_SLAVE0x41

#define REGISTER_ADDR0x11

DocID028276 Rev 1 63/220

UM1942 Communication drivers

220

res = ioctl(fd, I2C_SLAVE, REGISTER_ADDR);

if (res < 0) {

 /* ERROR HANDLING; you can check errno to see what went wrong
*/

 fprintf(stderr, "FAILED I2C Set Address. Ret=%d\n", res);

 close(fd);

 exit(-1);

}

This completes the setup. The SMBus commands or the plain I2C can now be used to
communicate with a device. SMBus commands are preferred if the device supports them.
Both are illustrated below.

Note that only a subset of the I2C and SMBus protocols can be achieved by the means of
read() and write() calls. In particular, so called combined transactions (mixing read and write
messages in the same transaction) aren't supported. For this reason, this interface is almost
never used by user space programs.

I2C dev. interface

The following IOCTLs are defined for user space access:

“ioctl(file, I2C_SLAVE, long addr)”

Change the slave address. The address is passed in the 7 lower bits of the argument
(except for 10-bit addresses, passed in the 10 lower bits in this case).

“ioctl(file, I2C_TENBIT, long select)”

Selects 10-bit addresses if selection not equals 0, selects normal 7-bit addresses if selection
equals 0. Default 0. This request is only valid if the adapter has “I2C_FUNC_10BIT_ADDR”.

“ioctl(file, I2C_FUNCS, unsigned long *funcs)”

Gets the adapter functionality and puts it in *funcs.

“ioctl(file, I2C_RDWR, struct i2c_rdwr_ioctl_data *msgset)”

Do combine read/write transaction without stop in between. Only valid if the adapter has
“I2C_FUNC_I2C”. The argument is a pointer to the following “struct”:

struct i2c_rdwr_ioctl_data {

 struct i2c_msg *msgs;/* ptr to array of simple messages */

 int nmsgs;/* number of messages to exchange */

}

The “msgs” pointer contains further pointers to data buffers. The function will write or read
data to or from that buffers depending on whether the “I2C_M_RD” flag is set in a particular
message or not. The slave address and whether to use the 10-bit address mode has to be
set in each message, overriding the values set with the above ioctl's.

“ioctl(file, I2C_SMBUS, struct i2c_smbus_ioctl_data *args)”

These are not meant to be called directly. Instead, use the access functions below. Plain I2C
transactions can be done by using read(2) and write(2) calls. The address byte does not
need to be passed. Instead, set it through the ioctl “I2C_SLAVE” before accessing the
device.

Communication drivers UM1942

64/220 DocID028276 Rev 1

SMBus level transactions (see <linux src>/Documentation/i2c/smbus-protocol for details)
are done through the following functions:

s32 i2c_smbus_write_quick(int file, u8 value) , _s32 i2c_smbus_read_byte(int file)

All these transactions return -1 on failure; errno can be read to see what happened.

The write transactions return “0” on success; the read transactions return the read value,
except for the “read_block”, which returns the number of values read. The block buffers
need not be longer than 32 bytes. The above functions are all inline functions that resolve to
calls to the “i2c_smbus_access” function that on its turn calls a specific ioctl with the data in
a specific format. Read the source code to know what happens behind the screens.

Access in kernel space, through client driver

Usually, a single driver structure will be implemented and all clients instantiate from it.

Note: A driver structure contains general access routines, and should be zero initialized except for
fields with data provided by the user. A client structure holds device specific information like
the driver model device node, and its I2C address.

Following example is taken from “drivers/misc/eeprom/eeprom.c”, an I2C client driver to
access EEPROMs.

Device creation

If it is known that an I2C device is connected to a given I2C bus, the device can be
instantiated by simply filling an i2c_board_info structure with the device address and driver
name and calling “i2c_new_device()”. This will create the device, the driver core will take
care of finding the right driver and will call its “probe()” method. If a driver supports different
device types, the type can be specified using the type field. IRQ and platform data can also
be specified if needed.

For example, in “arch/arm/mach-streamplug/streamplug_devel_board.c”:

static struct i2c_board_info initdata i2c_board_info[] = {

 {

 .type = "eeprom",

 .addr = 0x50,

 }

};

static void init i2c_init(void)

{

 i2c_register_board_info(0, i2c_board_info,

 ARRAY_SIZE(i2c_board_info));

}

Device detection

Sometimes is not known in advance which I2C devices are connected to a given I2C bus .
This is for example the case of hardware monitoring devices on a PC's SMBus. In that case,
the driver may be used to detect supported devices automatically. This is how the legacy
model was working, and is now available as an extension to the standard driver model.

Simply define a detect callback which will attempt to identify supported devices (returning 0
for supported devices and “-ENODEV” for unsupported devices), a list of addresses to
probe, and a device type (or class) so that only I2C buses which may have that type of the

DocID028276 Rev 1 65/220

UM1942 Communication drivers

220

device connected (and not otherwise enumerated) will be probed. For example, a driver for
a hardware monitoring chip for which auto-detection is needed would set its class to
“I2C_CLASS_HWMON”, and only I2C adapters with a class including
“I2C_CLASS_HWMON” would be probed by this driver. Note that the absence of matching
classes does not prevent the use of a device of that type on the given I2C adapter. All it
prevents is auto-detection; explicit instantiation of devices is still possible.

This device detection mechanism is purely optional and not suitable for all devices.
A reliable way to identify the supported devices (typically using device specific, dedicated
identification registers) is needed, otherwise misdetections are likely to occur and errors will
occur.

Keep in mind that the I2C protocol doesn't include any standard way to detect the presence
of a chip at a given address, let alone a standard way to identify devices. Even worse is the
lack of semantics associated to bus transfers, which means that the same transfer can be
seen as a read operation by a chip and as a write operation by another chip. For these
reasons, explicit device instantiation should always be preferred to auto-detection where
possible.

Device driver initialization

When the kernel is booted, or when an I2C driver module is inserted, some initializing has to
be done. Fortunately, just registering the driver module is usually enough. The following
example specifies the initialization procedure for an EEPROM device.

In the struct “i2c_driver”, below, the name field is the driver name, and must not contain
spaces. It should match the module name (if the driver can be compiled as a module),
although the “MODULE_ALIAS” can be used to add another name for the module. If the
driver name doesn't match the module name, the module won't be automatically loaded
(“HotPlug/ColdPlug”).

static const struct i2c_device_id eeprom_id[] = {

 { "eeprom", 0 },

 { },

};

MODULE_DEVICE_TABLE(i2c, eeprom_id);

static struct i2c_driver eeprom_driver = {

 .driver = {

 .name= "eeprom",

 },

 .probe= eeprom_probe,

 .remove= eeprom_remove,

 .id_table= eeprom_id,

 .class= I2C_CLASS_DDC | I2C_CLASS_SPD,

 .detect= eeprom_detect,

 .address_list= normal_i2c,

};

static int init eeprom_init(void)

{

Communication drivers UM1942

66/220 DocID028276 Rev 1

 return i2c_add_driver(&eeprom_driver);

}

static void exit eeprom_exit(void)

{

 i2c_del_driver(&eeprom_driver);

}

All other fields are for callback functions.

Extra client data

Each client structure has a special data field that can point to any structure at all. This may
be used to keep device specific data:

/* store the value */

void i2c_set_clientdata(struct i2c_client *client, void *data);

/* retrieve the value */

void *i2c_get_clientdata(const struct i2c_client *client);

I2C communication in kernel space

There are several functions that may be used to communicate with a device. They can be
found in “include/linux/i2c.h”.

“int i2c_master_send(struct i2c_client *client, const char *buf, int count)”

These routines read and write some bytes from/to a client. The client contains the I2C
address, it does not have to be included. The second parameter contains the bytes to
read/write, the third contains the number of bytes to read/write (must be less than the length
of the buffer, also should be less than 64 Kbytes because “msg.len” is u16). The actual
number of bytes read or written is returned.

“int i2c_transfer(struct i2c_adapter *adap, struct i2c_msg *msg, int num)”

This routine sends a series of messages. Each message can be a read or write, and they
can be mixed in any way. When the transactions are combined, no stop bit is sent between
transactions. The “i2c_msg” structure contains for each message the client address, the
number of bytes of the message and the message data itself.

SMBus communication in kernel space

Following defines SMBus APIs to access I2C devices from kernel space.

“s32 i2c_smbus_read_byte(struct i2c_client *client)”, “s32 i2c_smbus_write_byte(struct
i2c_client *client)”

All these transactions return a negative errno value on failure. The write transactions return
0 on success; the read transactions return the read value, except for block transactions,
which return the number of values read. The block buffers need not be longer than 32 bytes.

s32 i2c_smbus_xfer(struct i2c_adapter *adapter, u16 addr,

unsigned short flags, char read_write,

u8 command, int size, union i2c_smbus_data *data);

Read the file “linux-2.6/Documentation/i2c/smbus-protocol” for more information about the
actual SMBus protocol.

DocID028276 Rev 1 67/220

UM1942 Communication drivers

220

All functions in the above subsection are implemented in using the following “s32
i2c_smbus_xfer()” function which must not be used directly.

4.5 Serial peripheral interface (SPI) controller

The serial peripheral interface (SPI) bus is a synchronous serial data link standard named
by Motorola that operates in the full duplex mode. Devices communicate in the master/slave
mode where the master device initiates the data frame. Individual slave select (CHIP-
SELECT) lines allow to multiple slave devices as shown in Figure 7. The SPI is used to
connect microcontrollers to the sensors, memory and peripherals.

Figure 7. SPI master/slave connectivity

The SPI bus specifies four logic signals.

 SCLK - serial clock (output from master)

 MOSI - master output, slave input (output from master)

 MISO - master input, slave output (output from slave)

 SS - slave select (active low; output from master).

SCLK

MOSI

MISO

ss1

ss2

ss3

SPI

Master

SCLK

MOSI

MISO

ss

SPI

Slave

SCLK

MOSI

MISO

ss

SPI

Slave

SCLK

MOSI

MISO

ss

SPI

Slave

AM039714

Communication drivers UM1942

68/220 DocID028276 Rev 1

4.5.1 SPI software overview

The SPI framework present in Linux supports only the master side of the Motorola SPI
interface. User applications can use the interface provided by the protocol drivers present in
Linux. Protocol drivers use the standard calls provided by the SPI framework present in
Linux. The SPI controller driver provides the interface to the SPI framework for accessing
the SPI controller. The SPI controller transfers data to the SPI slave devices/memories
connected to it according to the configuration provided by the SPI controller driver. Figure 8
presents the SPI software system architecture.

Figure 8. SPI framework architecture

The Linux SPI framework defines two types of SPI drivers in Linux:

 Control drivers

 Protocol/slave drivers

Controller drivers configure SPI controllers. Their interface can be used for configuring the
controller and transfer data over the SPI bus. They may or may not use DMA for data
transfer with the slave device. The Linux SPI framework uses controller drivers for all its SPI
related operations. The ARM PL022 controller driver can be found at “drivers/spi/amba-
pl022.c”.

Protocol/slave drivers pass messages through the controller driver to communicate with
a slave device on the other side of an SPI link. They are present above the SPI kernel
framework and they provide the interface to the user applications present in the user space.

User space

Kernel space

Hardware

EPROM protocol
driver

SPI slave devices

User application

SPIDev interface

Linux SPI framework

SPI controller driver

SPI controller

AM039715

DocID028276 Rev 1 69/220

UM1942 Communication drivers

220

Currently two sample protocol drivers are present in the “drivers/spi” folder.

 FLASH protocol driver (“m25p80”, supported but not configured)

 General character interface driver, spidev (spidev is supported and configured by
default).

The FLASH driver uses the SPI framework to communicate with a range of serial NOR
chips. This driver presents a standard MTD interface to user applications. The MTD node for
the SPI can be found by looking at the “/proc/mtd” file after booting Linux. This driver can be
enabled through the CONFIG_MTD_M25P80 Kconfig option and is present in
“drivers/mtd/devices/”.

The general character interface driver provides a character special device to the SPI
controller. To access it, use the following calls: “open()”, “read()”, “write()” and “ioctl()”.

For a new interface, write a new protocol driver. For information on using the SPI
framework, see the “spidev.c” files in the “drivers/spi” folder.

The SPI shows up in “sysfs” at several locations:

 /sys/devices/. . . /CTLR . . . physical node for a given SPI controller

 /sys/devices/. . . /CTLR/spiB.C . . . spi_device on bus “B”, CHIP-SELECT C, accessed
through CTLR.

 /sys/bus/spi/devices/spiB.C . . . symlink to that physical . . . /CTLR/spiB.C device

 /sys/devices/. . . /CTLR/spiB.C/modalias . . . identifies the driver that should be used
with this device (for hot plug/cold plug)

 /sys/bus/spi/drivers/D . . . a driver for one or more spi*.* devices.

 /sys/class/spi_master/spiB . . . symlink (or actual device node) to a logical node which
could hold the class related state for the controller managing the bus “B”. All spiB.*
devices share one physical SPI bus segment, with SCLK, MOSI, and MISO.

The Linux SPI framework provides APIs for registering and unregistering SPI slave drivers
and transferring data over the SPI bus. These functions will be explained one by one with
examples from the FLASH driver.

“int spi_register_driver(struct spi_driver *sdrv)”

The SPI slave driver must register itself with the SPI framework by calling this API,
preferably from its “module_init()” routine. In this routine, the “struct slave_driver” is a
structure which contains information about the SPI slave driver.

struct spi_driver {

 const struct spi_device_id *id_table;

 int(*probe)(struct spi_device *spi);

 int(*remove)(struct spi_device *spi);

 void (*shutdown)(struct spi_device *spi);

 int(*suspend)(struct spi_device *spi, pm_message_t mesg);

 int(*resume)(struct spi_device *spi);

 struct device_driverdriver;

};

Implementation of all these functions may not be required.

Communication drivers UM1942

70/220 DocID028276 Rev 1

The following “spi_setup” API used to configure SPI controller slave drivers can change the
previously saved struct “spi_device” with the new SPI configuration, like “bits_per_word”,
“max_speed_hz”, mode, etc., and then call this API.

int spi_setup(struct spi_device *spi)

The following API writes len (length) bytes of data present at the “buf” (buffer) address to the
SPI slave device attached to the SPI controller.

int spi_write(struct spi_device *spi, const u8 *buf, size_t len)

The following API reads “len” bytes of data from the SPI slave device attached to the SPI
controller and saves data to the buf address.

int spi_read(struct spi_device *spi, u8 *buf, size_t len)

The following API is used for using the full duplex mode of the SPI controller. It writes data to
the slave device from the “txbuf” address and reads data to the “rxbuf” address from the
slave device. The length of transfer is “len” for both Tx and Rx.

int spi_write_and_read(struct spi_device *spi, const u8 *txbuf, u8
*rxbuf, size_t len)

The following spi_unregister API is used to unregister a slave driver from the SPI
framework. Preferably done from “module_exit()” routine of the slave driver.

void spi_unregister_device(struct spi_device *spi)

Adding a new slave driver

This section will explain how a slave device driver should register itself with the SPI
framework, using the “m25p80.c” driver as a basis for the example.

Registering slave driver

The SPI slave driver must be registered with the SPI framework. This is accomplished by
calling:

spi_register_driver(&m25p_driver);

Unregistering the driver

The SPI slave driver must unregister itself when its module is removed. This is done by
calling:

spi_unregister_driver(&m25p_driver).

DocID028276 Rev 1 71/220

UM1942 Communication drivers

220

Following is a registration part of the “drivers/mtd/devices/m25p80.c” driver:

static const struct spi_device_id m25p_ids[] = {

 { "at25fs010", INFO(0x1f6601, 0, 32 * 1024,4, SECT_4K) },

 { "at25fs040", INFO(0x1f6604, 0, 64 * 1024,8, SECT_4K) },

/* ST Microelectronics -- newer production may have feature updates?'

*/

 { "m25p05", INFO(0x202010, 0, 32 * 1024,2, 0)},

 { "m25p10", INFO(0x202011, 0, 32 * 1024,4, 0)},

 { "m25p20", INFO(0x202012, 0, 64 * 1024,4, 0)},

 { "m25p40", INFO(0x202013, 0, 64 * 1024,8, 0)},

 { "m25p80", INFO(0x202014, 0, 64 * 1024, 16, 0) },

 { },

};

MODULE_DEVICE_TABLE(spi, m25p_ids);

static struct spi_driver m25p_driver = {

 .driver = {

 .name = "m25p80",

 .owner = THIS_MODULE,

 },

 .id_table = m25p_ids,

 .probe= m25p_probe,

 .remove= devexit_p(m25p_remove),

};

static int init m25p80_init(void)

{

 return spi_register_driver(&m25p_driver);

}

module_init(m25p80_init);

static void exit m25p80_exit(void)

{

 spi_unregister_driver(&m25p_driver);

}

module_exit(m25p80_exit);

Communication drivers UM1942

72/220 DocID028276 Rev 1

The kind of the interface provided to the user applications is slave driver dependent (sysfs,
proc, dev, etc.). The struct spi_device is passed to the slave driver when the probe function
of the slave is called from the SPI framework after the device registration. The structure in
the slave driver must be saved and used for any communication with the SPI framework.

4.5.2 SPI kernel source and configuration

Following is the detail corresponding to the layout of the driver and kernel configuration:

The SPI controllers driver is present in “drivers/spi/amba-pl022.c”.

The SPI slave controller drivers are present in:

 “m25p80” slave driver: “drivers/mtd/devices/m25p80.c”

 “spidev” slave driver: “drivers/spi/spidev.c”

Table 12 lists the kernel configuration options associated with the SPI:

4.5.3 SPI platform configuration

Once the slave/protocol driver is up, we must add/register a slave device with the SPI bus.
The SPI controller driver and slave driver need some board specific data to work correctly.
This data is present in the all SoC's board files, (i.e.: “streamplug_devel_board.c”). There
are two types of platform information:

 “platform_data” which initializes “spi_device.platform_data”, the particular data stored
there is slave driver specific.

 “controller_data” which is required by the SPI controller driver. This structure is
controller driver specific and for adding a new slave device, it must be supplied.

DECLARE_SPI_CHIP_INFO(0, flash, spi0_flash_cs_control);

/* This will define CHIP_INFO structure for a specific spi slave */

#define DECLARE_SPI_CHIP_INFO(id, type, chip_select_control)\

static struct pl022_config_chip spi##id##_##type##_chip_info = {\

 .lbm = LOOPBACK_DISABLED,\

 .iface = SSP_INTERFACE_MOTOROLA_SPI,\

 .hierarchy = SSP_MASTER,\

 .slave_tx_disable = 0,\

 .endian_tx = 0,\

 .endian_rx = 0,\

 .ctrl_len = SSP_BITS_8,\

 .data_size = SSP_DATA_BITS_8,\

 .com_mode = INTERRUPT_TRANSFER,\

Table 12. SPI configurations

Configuration Description

CONFIG_SPI It enables SPI framework layer support

CONFIG_SPI_MASTER It enables SPI_MASTER support

CONFIG_SPI_PL022 It enables AMBA™ PL022 controller support

CONFIG_SPI_SPIDEV It enables SPIDEV slave support

DocID028276 Rev 1 73/220

UM1942 Communication drivers

220

 .rx_lev_trig = 0,\

 .tx_lev_trig = 0,\

 .clk_phase = SSP_CLK_FIRST_EDGE,\

 .clk_pol = SSP_CLK_POL_IDLE_LOW,\

 .cs_control = chip_select_control,\

};

static struct spi_board_info initdata spi_board_info[] = {

/* register m25p80 driver */

 {

 .modalias = "m25p80",

 .controller_data = &spi0_flash_chip_info,

 .platform_data = &spi_flash_info,

 .max_speed_hz = 800000,

 .bus_num = 0,

 .chip_select = 0,

 .mode = 0,

 }

};

/* Define chip select routine using GPIO_15 (gpio line 39) as default,
otherwise is

provided by command line option */

DECLARE_SPI_CS_CONTROL(0, flash, cs_gpio_pin);

/* This will define cs_control function for a specific spi slave */

#define DECLARE_SPI_CS_CONTROL(id, type, gpio)\

 static void spi##id##_##type##_cs_control(u32 control)\

 {\

 static int count, ret;\

 \

 if (unlikely(!count)) {\

 count++; \ ret = spi_cs_gpio_request(gpio);\

 } \

 \

 if (!ret) \

 gpio_set_value(gpio, control); \

}

/* Definition of spi_cs_gpio_request() is present in <plat/spi.h> */

static inline int spi_cs_gpio_request(u32 gpio_pin)

{

 int ret;

 ret = gpio_request(gpio_pin, "SPI_CS");

 if (ret < 0) {

Communication drivers UM1942

74/220 DocID028276 Rev 1

 printk(KERN_ERR "SPI: gpio:%d request fail\n", gpio_pin);

 return ret;

 }

 else {

 ret = gpio_direction_output(gpio_pin, 1);

 if (ret) {

 printk(KERN_ERR "SPI: gpio:%d direction set fail\n",

 gpio_pin);

 return ret;

 }

 }

 return 0;

}

4.5.4 SPI usage

The user space and kernel space usage through the framework or directly (if the framework
is not present).

4.6 Linux TTY framework

The TTY framework of the Linux kernel, serves as an intermediary layer between hardware
device drivers and user applications to provide line buffering and management of input and
output. The layer is purely software oriented and makes no direct communication with
physical hardware. Instead, the TTY driver relies on an underlying device driver to
communicate directly with the hardware.

4.6.1 Linux TTY framework software overview

The basic function of the TTY layer is to interface with the lower level device driver and
insulate the higher level from the complexity of the hardware level. There are different types
of TTY drivers: the console and serial port. The console driver is used at two different places
in Linux. Firstly, at boot time it is used before the initialization of the serial TTY framework as
it takes some time for the serial TTY framework to initialize during Linux boot-up. Secondly,
after Linux boot-up, the console device sits in the lowest levels of Linux in order to bring
critical information out of the system as soon as possible. It is not involved in all the
complexity of TTY management.

4.6.2 Linux TTY framework kernel source

The tty source code in Linux is present in “drivers/char/tty_*” files.

4.6.3 Linux TTY framework usage

The following paragraphs briefly describe system calls which can be used to access and
use serial devices in the TTY framework. The non-blocking mode is supported. When
running in the blocking mode it may need to wait for the carrier.

DocID028276 Rev 1 75/220

UM1942 Communication drivers

220

System calls

TTY side interfaces:

open()

Called when the line discipline is attached to the terminal. No other call into the line
discipline for this TTY will occur until it completes successfully. Returning an error will
prevent the ldisc from being attached. If the “O_NONBLOCK” flag is specified and the
open() call would result in the process being blocked for some reason it returns immediately.
The first time the process attempts to perform I/O on the open descriptor it will block.

close()

This is called on a terminal when the line discipline is being unplugged. At the point of
execution no further users will enter the ldisc code for this TTY.

hangup()

Called when the tty line is hung up. The line discipline should cease I/O to the TTY. No
further calls into the ldisc code will occur. The return value is ignored.

write()

A process is writing data through the line discipline. Multiple write calls are serialized by the
tty layer for the “ldisc”.

flush_buffer()

(Optional). May be called at any point between open and close, and instructs the line
discipline to empty its input buffer.

chars_in_buffer()

(Optional). Reports the number of bytes in the input buffer.

set_termios()

(Optional). Called on “termios” structure changes. The caller passes the old termios data
and the current data is in the TTY. It is called under the termios semaphore so it is allowed to
sleep. Serialized only against itself.

read()

Moves data from the line discipline to the user. Multiple read calls may occur in parallel and
the ldisc must deal with serialization issues.

poll()

Checks the status for the poll/select calls. Multiple poll calls may occur in parallel.

ioctl()

Called when an ioctl is handed to the TTY layer that might be for the ldisc. Multiple ioctl calls
may occur in parallel.

compat_ioctl()

Called when a 32-bit ioctl is handed to the TTY layer that might be for the ldisc. Multiple ioctl
calls may occur in parallel.

Communication drivers UM1942

76/220 DocID028276 Rev 1

Example commands

The following paragraphs are example commands:

Getty

Getty opens a TTY port, prompts for a login name and invokes the “/bin/login” command.
The getty command sets and manages terminals by setting up the speed, the terminal flags,
and the line discipline.

Example:

/sbin/getty 9600 ttyAMA1

Stty

Stty is used to change and print the terminal line settings.

+/* List the attribute settings for a terminal that has a user logged+

+ * on it already.+

+ */+

stty -a -F /dev/ttyAMA0

+/* Disable modem control signals. */+

stty clocal -F /dev/ttyAMA0

+/* Enable RTS/CTS handshaking */+

stty crtscts -F /dev/ttyAMA0

/* Set the baud rate of current terminal to 9600 baud. */

stty

4.7 Universal asynchronous receiver/transmitter (UART)

The UART is a universal asynchronous receiver/transmitter that supports much of the
industry standard 16C550 UART. Two UART ports are available on the STreamPlug. This
section describes the integration of the STreamPlug UART device driver into the Linux
kernel.

DocID028276 Rev 1 77/220

UM1942 Communication drivers

220

4.7.1 UART software overview

UART drivers support the TTY kernel layer. The I/O system calls start above top level line
disciplines and finally ripple down to UART drivers through the TTY layer as shown in
Figure 9. The data flow between the user space and the serial device driver, therefore, is
mediated by the TTY layer, that implements functionalities that are common to all TTY-type
devices.

Figure 9. UART software system architecture

There are different types of TTY drivers: the console and serial port. The console driver is
used at two different places in Linux. First, at boot time it is used before the initialization of
the serial TTY framework as it takes some time for the serial TTY framework to initialize
during Linux boot-up. Secondly, after Linux boot-up, the console device sits in the lowest
levels of Linux in order to bring critical information out of the system as soon as possible.
It is not involved in all the complexity of TTY management. The serial ports are named
ttyAMA0, ttyAMA1, etc. For each such serial port, there is a special file in the /dev (device)
directory. The major number 204 is associated to the ttyAMA driver. For the UART layer the
major number is 204 and the minor number ranges between 64 - 255.

User space

Kernel space

Hardware

Console driver

UART hardware ARM PL011

Application

Linux TTY layer

UART driver

AM039716

Communication drivers UM1942

78/220 DocID028276 Rev 1

4.7.2 UART kernel source and configuration

The following section contains details corresponding to the layout of the driver and kernel
configuration.

The UART AMBA PL011 controller driver is present in “drivers/serial/amba-pl011.c”.

The serial core controller is present in “drivers/serial/serial-core.c”.

The platform data defining UART1 and UART2 controller configurations is present in
“arch/arm/mach-streamplug/streamplug1x.c” as listed:

 “CONFIG_SERIAL_CORE” enables the UART TTY framework.

 “CONFIG_SERIAL_CORE_CONSOLE” enables the UART console framework.

 “CONFIG_SERIAL_AMBA_PL011” enables STreamPlug AMBA PrimeCell PL011
UART driver support for the TTY framework.

 “CONFIG_SERIAL_AMBA_PL011_CONSOLE” enables the STreamPlug UART driver
support for the console framework.

4.7.3 UART platform configuration

This section lists the driver's platform interface and its possible configuration.

Driver configuration

Default device registration of the UART1/2 controller depends on the platform data passed
from the boards (“arch/arm/mach-streamplug/streamplug1x.c”).

/* uart1 device registration */

struct amba_device streamplug1x_uart1_device = {

 .dev = {

 .init_name = "uart1",

 },

 .res = {

 .start = STREAMPLUG1X_ICM1_UART1_BASE,

 .end = STREAMPLUG1X_ICM1_UART1_BASE + SZ_4K - 1,

 .flags = IORESOURCE_MEM,

 },

 .irq = {STREAMPLUG1X_IRQ_LOW_SPEED_SUBS_UART1, NO_IRQ},

};

struct amba_device streamplug1x_uart2_device = {

 .dev = {

 .init_name = "uart2",

 },

 .res = {

 .start = STREAMPLUG1X_ICM1_UART2_BASE,

 .end = STREAMPLUG1X_ICM1_UART2_BASE + SZ_4K - 1,

 .flags = IORESOURCE_MEM,

 },

 .irq = {STREAMPLUG1X_IRQ_LOW_SPEED_SUBS_UART2, NO_IRQ},

};

DocID028276 Rev 1 79/220

UM1942 Communication drivers

220

4.7.4 UART usage

For usage please refer to the chapter on the Linux TTY framework.

4.8 Control area network (CAN)

The controller area network (CAN) bus is a bus designed to allow microcontrollers and
devices to communicate with each other without a host computer. The STreamPlug CAN
device driver is derived from the CAN bus driver for the “C_CAN” controller which is
compliant to the CAN protocol version 2.0.

4.8.1 CAN software overview

The CAN device driver belongs to the Linux network stack and it is accessible through
network interfaces. The entire stack can be summarized in the following layers and features:

 Application layer

 Object layer

– Message filtering

– Message and status handling

 Transfer layer

– Fault confinement

– Error detection and signaling

– Message validation

– Acknowledgment

– Arbitration

– Message framing

– Transfer rate and timing

 Physical layer

– Signal level and bit representation

– Transmission medium

Communication drivers UM1942

80/220 DocID028276 Rev 1

4.8.2 CAN kernel source and configuration

Table 13 lists the STreamPlug Linux kernel configuration which must be used to support the
STreamPlug CAN bus.

The key source code about the STreamPlug CAN device driver can be found in the following
files:

drivers/net/can/c_can

drivers/net/can/c_can/c_can.h

drivers/net/can/c_can/c_can.c

drivers/net/can/c_can/c_can_platform.c

arch/arm/mach-streamplug/ipswrst_ctrl.c

arch/arm/mach-streamplug/include/mach/generic.h

arch/arm/mach-streamplug/include/mach/streamplug10.h

arch/arm/mach-streamplug/clock.c

arch/arm/mach-streamplug/padmux.c arch/arm/mach-streamplug/streamplug1x.c

An other related source code can be found also in the following folders:

include/linux/can

include/linux/can/platform

net/can

The hardware filtering mechanism is not enabled there, so all messages are considered
good.

Table 13. CAN Linux kernel configuration

Configuration Description

CONFIG_CAN=y Enable CAN support

CONFIG_CAN_RAW=y

CONFIG_CAN_BCM=y

CONFIG_CAN_DEV=y

CONFIG_CAN_CALC_BITTIMING=y

CONFIG_CAN_C_CAN=y Enable C_CAN support

CONFIG_CAN_C_CAN_PLATFORM=y Enable C_CAN platform

DocID028276 Rev 1 81/220

UM1942 Communication drivers

220

4.8.3 CAN platform configuration

The STreamPlug CAN device driver manages two resources: CAN1 and CAN2. The
platform code for the driver is shown in the following paragraphs:

/* CAN1 device registration */

static struct resource can1_resources[] = {

{

 .start = STREAMPLUG1X_ICM1_CAN1_BASE,

 .end = STREAMPLUG1X_ICM1_CAN1_BASE + SZ_4K - 1,

 .flags = IORESOURCE_MEM | IORESOURCE_MEM_32BIT,

 }, {

 .start = STREAMPLUG1X_IRQ_LOW_SPEED_SUBS_CAN1,

 .flags = IORESOURCE_IRQ,

 },

};

struct platform_device streamplug1x_can1_device = {

 .name = "c_can_platform",

 .id = 1,

 .num_resources = ARRAY_SIZE(can1_resources),

 .resource = can1_resources,

};

/* CAN2 device registration */

static struct resource can2_resources[] = {

 {

 .start = STREAMPLUG1X_ICM1_CAN2_BASE,

 .end = STREAMPLUG1X_ICM1_CAN2_BASE + SZ_4K - 1,

 .flags = IORESOURCE_MEM | IORESOURCE_MEM_32BIT,

 }, {

 .start = STREAMPLUG1X_IRQ_LOW_SPEED_SUBS_FIRDA_CAN2,

 .flags = IORESOURCE_IRQ,

 },

};

struct platform_device streamplug1x_can2_device = {

 .name = "c_can_platform",

 .id = 2,

 .num_resources = ARRAY_SIZE(can2_resources),

 .resource = can2_resources,

};

Communication drivers UM1942

82/220 DocID028276 Rev 1

4.8.4 CAN usage

To enable the CAN support at run-time it is necessary to configure the Linux kernel
command line using one of the options listed in Table 4 on page 22.

The CAN device driver can be tested connecting the board to a remote PC by a CAN to the
USB bridge.

Two CAN interfaces are available for STreamPlug user application: CAN0 and CAN1. The
file can_readme.txt available in the folder “/examples/can” describes a set of user space
commands to test the CAN interfaces. In particular, it focuses on the following commands:

/sbin/ip link set <device> type can bitrate <value>

ifconfig <device> up

cansend <device> <can_frame>

candump <device> > <outputfile>

The following is an example of a Linux session where the previous commands are used to
setup the CAN bus and to receive and send simple messages.

STreamPlug login: root

#

cd /examples/can

/sbin/ip link set can0 type can bitrate 125000

/sbin/ip -details -statistics link show can0

2: can0: <NOARP,ECHO> mtu 16 qdisc noop state DOWN qlen 10

link/can

can state STOPPED (berr-counter tx 0 rx 0) restart-ms 0

bitrate 125000 sample-point 0.875

tq 1000 prop-seg 3 phase-seg1 3 phase-seg2 1 sjw 1

c_can: tseg1 2..16 tseg2 1..8 sjw 1..4 brp 1..1024 brp-inc 1

clock 83000000

re-started bus-errors arbit-lost error-warn error-pass bus-off

0 0 0 0 0 0

RX: bytes packets errors dropped overrun mcast

0 0 0 0 0 0

TX: bytes packets errors dropped carrier collsns

0 0 0 0 0 0

ifconfig can0 up

c_can_platform c_can_platform.1: can0: setting BTR=0512 BRPE=0001

cansend can0 5A1#11.22.33.44.55.66.77.88

candump can0

can0 888 [8] 01 02 03 04 05 06 07 08

can0 888 [8] 01 02 03 04 05 06 07 08

can0 888 [8] 01 02 03 04 05 06 07 08

can0 888 [8] 01 02 03 04 05 06 07 08

Other tests can be performed with the can utils utilities provided with the auxiliary filesystem.

DocID028276 Rev 1 83/220

UM1942 Communication drivers

220

4.9 Fast infrared data association (FIrDA)

The FIrDA IP is a Fast infrared controller that provides an interface to infrared wireless
devices. It supports three IrDA™ modes, SIR, MIR and FIR. The transfer speed ranges from
2400 bps (SIR) to 4 Mbps (FIR). The standard mode, SIR, accesses the infrared port
through a serial interface. The faster modes, MIR and FIR, require special support handling
in Linux. In general, as reported by “irattach” manual page, Linux FIR support is not as
stable and mature as SIR or MIR.

4.9.1 FIrDA software overview

The FIrDA Linux device driver belongs to the Linux network subsystem. The device may
enable and be configured from the command line into the OK Linux XML cell configuration
file. The FIrDA Linux device driver is initialized using platform data provided by the
command line. In particular the QOS (Quality Of Service) parameters are set at driver
initialization. The QoS parameters are used by IrLAP protocol during the negotiation phase
with IrDA peers.

4.9.2 FIrDA kernel source and configuration

The most important source files for this device driver are:

drivers/net/irda/dice_fir.c

include/linux/dice_fir.h

However, other aspects of it are defined in the following files:

arch/arm/mach-streamplug/ipswrst_ctrl.c

arch/arm/mach-streamplug/include/mach/generic.h

arch/arm/mach-streamplug/include/mach/streamplug10.h

arch/arm/mach-streamplug/clock.c

arch/arm/mach-streamplug/padmux.c

arch/arm/mach-streamplug/streamplug_devel_board.c

arch/arm/mach-streamplug/streamplug1x.c

In order to support the FIrDA device driver it is necessary to enable the following options in
Table 14 within the STreamPlug Linux kernel configuration file.

Table 14. FIrDA Linux kernel configuration

Configuration Description

CONFIG_IRDA=y Add support for the IrDA™ protocols.

CONFIG_IRLAN=y Add support for IrLAN protocol.

CONFIG_IRCOMM=y Add support for the IrCOMM protocol.

CONFIG_DICE_FIR=y Add support for FIR

CONFIG_IRDA_DEBUG_DEVICE=y Activate debugging of IrDA device drivers

Communication drivers UM1942

84/220 DocID028276 Rev 1

4.9.3 FIrDA platform configuration

The FIrDA device driver is characterized by the following STreamPLug FIrDA platform C
structures:

/* Fast Irda Controller registration */

static struct resource irda_resources[] = {

 {

 .start = STREAMPLUG1X_ICM1_FIRDA_BASE,

 .end = STREAMPLUG1X_ICM1_FIRDA_BASE + SZ_4K - 1,

 .flags = IORESOURCE_MEM,

 }, {

 .start = STREAMPLUG1X_IRQ_LOW_SPEED_SUBS_FIRDA_CAN2,

 .flags = IORESOURCE_IRQ,

 },

};

#if defined (CONFIG_DICE_FIR)

static struct dice_fir_platform_data irda_platform_data;

#endif

struct platform_device streamplug1x_irda_device = {

#if defined (CONFIG_DICE_FIR)

 .name = "dice_fir",

#elif defined (CONFIG_DICE_IR)

 .name = "dice_ir",

#endif

 .id = -1,

 .num_resources = ARRAY_SIZE(irda_resources),

 .resource = irda_resources,

#if defined (CONFIG_DICE_FIR)

 .dev.platform_data = &irda_platform_data,

#endif

};

4.9.4 FIrDA usage

To enable the FIrDA support at run-time it is necessary to configure the Linux kernel
command line using one of the options listed in Table 4 on page 22.

A user space application, “irda_xfer” is provided in the STreamPlug filesystem
(/examples/irda). It shall be used to test IrDA functionalities using two STreamPlug boards
wire connected via the FIrDA I/Os. Since the IrDA is a network interface, the first step is the
activation of the network IrDA interface using the ifconfig command.

$ ifconfig irda0 up

Finally, a file transfer can be established by using run “irda_xfer”. It starts a discover
procedure to determine whether there are any IrDA peers and upon the discovery it
transfers the files indicated in the command argument between them.

DocID028276 Rev 1 85/220

UM1942 Communication drivers

220

To put side “A” in the listening mode, use:

$./irda_xfer -r

To send the file from the side B to side A, use :

$./irda_xfer -s</path/irdaInputFile>

An example of a session that sends a file through the IrDA interface is shown below.

uname -a

Linux STreamPlug 2.6.35-vcpu-okl_streamplug+ #76 Mon Aug 27 14:48:15
CEST 2012 vcpuv5-el GNU/Linux

pwd

/examples/irda

cat hello_world.txt hello world

ifconfig

irda0 Link encap:UNSPEC HWaddr C0-70-0B-A0-1D-00-00-00-00-00-00-00-00-00-
00-00

UP RUNNING NOARP MTU:2048 Metric:1

RX packets:81 errors:0 dropped:0 overruns:0 frame:0

TX packets:107 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:8

RX bytes:366 (366.0 B) TX bytes:866 (866.0 B) Interrupt:25

./irda_xfer -shello_world.txt

804: Using default DeviceIrDA: irda0

807: open socket

133: Waiting for discovery to finish.

122: getsockopt IRLMP_ENUMDEVICES ok, len=40

Discovered:

daddr: 81a3310a saddr: a00b70c0 name: Linux

Connected to 81a3310a mtu = 2039

date: 497

date: 62168263697000000

sent: FILE 12 32 14474676 3656803904 hello_world.txt

Received (5) ACK Y

Sent hello_world.txt, 12 bytes in 1 sec. 0.012 KBytes/sec last read:
Transport endpoint is not connected

#

While the following is the dump of a session to receive a file through the same interface.

ifconfig

ifconfig irda0 up

ifconfig

irda0 Link encap:UNSPEC HWaddr

56-0A-1D-F4-1D-00-00-00-00-00-00-00-00-00-00-00

UP RUNNING NOARP MTU:2048 Metric:1

RX packets:0 errors:0 dropped:0 overruns:0 frame:0

TX packets:0 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:8

Communication drivers UM1942

86/220 DocID028276 Rev 1

RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

Interrupt:25

./irda_xfer -r

804: Using default DeviceIrDA: irda0

807: open socket

mtu=2039

FILE 12 32 14474676 3656803904 hello_world.txt

filename: hello_world.txt

filesize: 12

Filemode: 32, Modified

fdate1: 14474676 = 0xdcddb4

fdate2: 3656803904 = 0xd9f66640

filedate: 62168263697000000

filedate: 497 = Thu Jan 1 00:08:17 1970

Received hello_world.txt, 12 bytes in 1 sec. 0.012 KBytes/sec

ls -altr

-rwxrwxrwx 1 1000 1000 625971 Jan 1 1970 irda_xfer

-rw-r--r-- 1 1000 1000 1344 Jan 1 1970 irda_readme.txt

-rw-r--r-- 1 1000 1000 1341 Jan 1 1970 irdaInputFile.txt drwxr-xr-x
10 1000 1000 0 Jan 1 1970 ..

-rw-r--r-- 1 root root12 Jan 1 1970 hello_world.txt drwxr-xr-x 2
1000 1000 0 Mar 3 21:43 .

cat hello_world.txt hello world

#

dmesg

bootconsole [early0] enabled

Linux version 2.6.35-vcpu (xxxx@VirtualBox) (gcc version 4.3.3

(Sourcery G++ Lite 2009q1-203)) #9 Tue Aug 28 09:36:05 CEST 2012

CPU: vCPUv5 [14069260] revision 0 (ARMv5TEJ) CPU: VIVT data cache, VIVT
instruction cache Machine: ST-STREAMPLUG-DEBUG

ATag virq 4, "timer_tick"

ATag microvisor_timer 2d, 4, "timer_microvisor_timer"

ATag vclient 2e, 20, 6, "vserial_vtty0_vclient"

On node 0 totalpages: 8192

free_area_init_node: node 0, pgdat 843e4eb8, node_mem_map 847a4000

Normal zone: 64 pages used for memmap

Normal zone: 0 pages reserved

Normal zone: 8128 pages, LIFO batch:0

OKL4: vcpu_helper_page at 847e5000/01fff000

VMMU:paging_init: VMMU: Cache management handing is possibly not
correct

(SDK-1545).

Built 1 zonelists in Zone order, mobility grouping on. Total pages:
8128

DocID028276 Rev 1 87/220

UM1942 Communication drivers

220

Kernel command line: console=vcon0,115200n8 clcd=off sata=off pcie=off
usb=on:host eth=off i2c=off ssp=off uart1=on:primary uart2=on:primary
can=off firda=on:3 fsmc=off sport=off ts=off

PID hash table entries: 128 (order: -3, 512 bytes)

Dentry cache hash table entries: 4096 (order: 2, 16384 bytes) Inode-
cache hash table entries: 2048 (order: 1, 8192 bytes) Memory: 32MB =
32MB total

Memory: 24652k/24652k available, 8116k reserved, 0K highmem

Virtual Kernel memory layout:

vector : 0x01fff000 - 0x02000000 (4 kB)

fixmap : 0xfff00000 - 0xfffe0000 (896 kB)

DMA : 0xfb800000 - 0xfc000000 (8 MB)

vmalloc : 0x86800000 - 0xf0000000 (1688 MB)

lowmem : 0x84000000 - 0x86000000 (32 MB)

modules : 0x83000000 - 0x84000000 (16 MB)

.init : 0x84000000 - 0x8401d000 (116 kB)

.text : 0x8401d000 - 0x8439d000 (3584 kB)

.data : 0x843b4000 - 0x843e54c0 (198 kB)

Hierarchical RCU implementation.

Verbose stalled-CPUs detection is disabled. NR_IRQS:512

Console: colour dummy device 80x30

Calibrating delay loop... 164.24 BogoMIPS (lpj=821248)

pid_max: default: 4096 minimum: 301

Mount-cache hash table entries: 512

CPU: Testing write buffer coherency: ok

VCPU support v1.0

NET: Registered protocol family 16

padmux: dev name usb

padmux: dev name uart1

padmux: dev name uart2

padmux: dev name firda

Serial: AMBA PL011 UART driver

uart1: ttyAMA0 at MMIO 0xd0000000 (irq = 26) is a AMBA/PL011

uart2: ttyAMA1 at MMIO 0xd0080000 (irq = 27) is a AMBA/PL011

bio: create slab <bio-0> at 0

vServices Framework 1.0 registering driver 0

SCSI subsystem initialized

usbcore: registered new interface driver usbfs

usbcore: registered new interface driver hub

usbcore: registered new device driver usb

NET: Registered protocol family 23

Switching to clocksource microvisor timer

NET: Registered protocol family 2

IP route cache hash table entries: 1024 (order: 0, 4096 bytes)

TCP established hash table entries: 1024 (order: 1, 8192 bytes)

TCP bind hash table entries: 1024 (order: 0, 4096 bytes)

Communication drivers UM1942

88/220 DocID028276 Rev 1

TCP: Hash tables configured (established 1024 bind 1024) TCP reno
registered

NET: Registered protocol family 1

Trying to unpack rootfs image as initramfs... Freeing initrd memory:
3724K

VFS: Disk quotas dquot_6.5.2

Dquot-cache hash table entries: 1024 (order 0, 4096 bytes)

JFFS2 version 2.2. (NAND) © 2001-2006 Red Hat, Inc.

msgmni has been set to 55

alg: No test for stdrng (krng)

io scheduler noop registered

io scheduler deadline registered

io scheduler cfq registered (default)

vServices Microvisor Transport v1.0

registering driver 0

OKL4 virtual console init

console [vcon0] enabled, bootconsole disabled

brd: module loaded

registering driver 0

st: Version 20081215, fixed bufsize 32768, s/g segs 256 smi smi: mtd
.name=w25q64_bank0 .size=800000(8M)

smi smi: .erasesize = 0x10000(64K)

Creating 1 MTD partitions on "w25q64_bank0":

0x000000000000-0x000000800000 : "Reserved"

smi smi: mtd .name=w25q64_bank1 .size=800000(8M)

smi smi: .erasesize = 0x10000(64K)

Creating 1 MTD partitions on "w25q64_bank1":

0x000000000000-0x000000800000 : "Auxiliary Root File System" smi smi:
mtd .name=w25q64_bank2 .size=800000(8M)

smi smi: .erasesize = 0x10000(64K)

Creating 1 MTD partitions on "w25q64_bank2":

0x000000000000-0x000000800000 : "Root File System"

CAN device driver interface

vs_ethernet_server_init - registering registering driver 0

usbcore: registered new interface driver asix

usbcore: registered new interface driver cdc_ether

usbcore: registered new interface driver cdc_eem

usbcore: registered new interface driver net1080

dice_fir dice_fir: DICE Fast IrDA probed successfully

ehci_hcd: USB 2.0 'Enhanced' Host Controller (EHCI) Driver

streamplug-ehci streamplug-ehci: STREAMPLUG EHCI

streamplug-ehci streamplug-ehci: new USB bus registered, assigned bus
number 1

streamplug-ehci streamplug-ehci: irq 5, io mem 0xe1800000

streamplug-ehci streamplug-ehci: USB 0.0 started, EHCI 1.00

hub 1-0:1.0: USB hub found

DocID028276 Rev 1 89/220

UM1942 Communication drivers

220

hub 1-0:1.0: 1 port detected

ohci_hcd: USB 1.1 'Open' Host Controller (OHCI) Driver

streamplug-ohci streamplug-ohci.0: STREAMPLUG OHCI

streamplug-ohci streamplug-ohci.0: new USB bus registered, assigned bus
number 2

streamplug-ohci streamplug-ohci.0: irq 5, io mem 0xe1900000

hub 2-0:1.0: USB hub found

hub 2-0:1.0: 1 port detected

Initializing USB Mass Storage driver...

usbcore: registered new interface driver usb-storage

USB Mass Storage support registered.

Loading designware_udc:

rtc-streamplug rtc-streamplug: rtc core: registered rtc-streamplug as
rtc0

i2c /dev entries driver

sp805-wdt wdt: registration successful

dw_dmac: DesignWare DMA Controller, 8 channels

TCP cubic registered

NET: Registered protocol family 10

IPv6 over IPv4 tunneling driver

NET: Registered protocol family 17

can: controller area network core (rev 20090105 abi 8)

NET: Registered protocol family 29

can: raw protocol (rev 20090105)

can: broadcast manager protocol (rev 20090105 t)

IrCOMM protocol (Dag Brattli)

802.1Q VLAN Support v1.8 Ben Greear <greearb@candelatech.com>

All bugs added by David S. Miller <davem@redhat.com> registering driver
0

rtc-streamplug rtc-streamplug: setting system clock to 1990-03-03

21:35:15 UTC (636500115)

Freeing init memory: 116K

net irda0: dice_fir_set_baudrate IrDA mode FIR -> SIR mode

net irda0: dice_fir_set_baudrate IrDA mode SIR -> FIR mode

Further IrDA utilities (provided by the buildroot for the auxiliary filesystem) or IrTTY device
driver functionalities (SIR only) can be used for IrDA test purposes.

Communication drivers UM1942

90/220 DocID028276 Rev 1

4.10 Peripheral component interconnect express (PCIe)

The PCIe is an important serial bus protocol which is commonly used for peripheral
expansion. Gen1 operates at 2.5 Gbits/s. It is very similar to legacy PCI from the user's
perspective.The upper software layer is the same as that of PCI. The lower layer has some
PCIe-specific read/write configuration. When software boots, it determines which devices
are connected downstream and at what speed (Gen1). Then it creates a map for the entire
downstream device, which is further used by a device specific driver.

The STreamPlug PCIe controller is a dual mode controller, which can work as:

 Root complex (RC, host)

 Endpoint (EP, device)

4.10.1 PCIe software overview

Both the PCIe host and device controllers require initial PCIe modules configured.

The IP initialization (“arch/arm/mach-streamplug/streamplu1x.c”) code is shown below.

static int pcie_init(struct device *dev, void iomem *mmio)

{

 int ret; set_pcie_reset_disable();

 set_pcie_clock_enable();

 set_ltssm_disable();

 set_uport_reset_disable();

 set_uport_clock_enable();

 set_pcie_core_reset_n_release();

 set_uport_reset_enable();

 set_uport_clock_disable();

 set_pcie_core_reset_n_setup();

 set_uport_reset_disable();

 set_uport_clock_enable();

 set_pcie_core_reset_n_release();

 ret = miphy_pipew_completion();

 if (ret) {

 dev_err(dev, "failed miphy init pipew completion\n");

 goto err;

 }

DocID028276 Rev 1 91/220

UM1942 Communication drivers

220

 miphy_write(MIPHY_TX_DETECT_POLL_REG, 0x08);

 ret = miphy_pll_idll_ready();

 if (ret) {

 dev_err(dev, "failed pll/idll not ready\n");

 goto err;

 }

 return 0;

 err:

 return ret;

}

The initialization happens in the following order:

set_pcie_reset_disable()

The “arch/arm/plat-streamplug/misc.c” routine removes the PCIe controller from the reset
state as shown below.

void set_pcie_reset_disable(void)

{

 u32 val;

 val = misc_readl((u32*)(GetOffset(sMiscRegs, expi_sub_swrst_reg))
);

 val &= ~EXPI_SUB_PCIE_SWRST_MASK;

 misc_writel(val, (u32*)(GetOffset(sMiscRegs, expi_sub_swrst_reg))
);

}

set_pcie_clock_enable()

The “arch/arm/plat-streamplug/misc.c” routine configures the clock for the PCIe controller as
shown below:

void set_pcie_clock_enable(void)

{

 u32 val;

 val = misc_readl((u32*)(GetOffset(sMiscRegs, expi_sub_clk_enb_reg))
);

 val |= EXPI_SUB_PCIE_CLKENB_MASK;

 misc_writel(val, (u32*)(GetOffset(sMiscRegs, expi_sub_clk_enb_reg))
);

}

Communication drivers UM1942

92/220 DocID028276 Rev 1

set_ltssm_disable()

The “arch/arm/plat-streamplug/misc.c” routine disables ltssm as shown below.

void set_ltssm_disable(void)

{

 u32 val;

 val = misc_readl((u32*)(GetOffset(sMiscRegs, pcie_ctr)));

 val &= ~PCIE_CTR_LTSSM_ENB_MASK;

 misc_writel(val, (u32*)(GetOffset(sMiscRegs, pcie_ctr)));

}

set_uport_reset_disable()

The “arch/arm/plat-streamplug/misc.c” routine removes the PCIe UPortTM from the reset
state as shown below.

void set_uport_reset_disable(void)

{

 u32 val;

 val = misc_readl((u32*)(GetOffset(sMiscRegs, expi_sub_swrst_reg))
);

 val &= ~EXPI_SUB_UPORT_SWRST_MASK;

 misc_writel(val, (u32*)(GetOffset(sMiscRegs, expi_sub_swrst_reg))
);

}

set_uport_clock_enable()

The “arch/arm/plat-streamplug/misc.c” routine configures the clock for the UPort controller
as shown below.

void set_uport_clock_enable(void)

{

 u32 val;

 val = misc_readl((u32*)(GetOffset(sMiscRegs, expi_sub_clk_enb_reg))
);

 val |= EXPI_SUB_UPORT_CLKENB_MASK;

 misc_writel(val, (u32*)(GetOffset(sMiscRegs, expi_sub_clk_enb_reg))
);

}

DocID028276 Rev 1 93/220

UM1942 Communication drivers

220

set_pcie_core_reset_n_release()

The “arch/arm/plat-streamplug/misc.c” removes the PCIe core from the reset state as
shown below.

void set_pcie_core_reset_n_release(void)

{

 set_pcie_pcie_core_reset_n_release();

 set_pcie_pipew_core_reset_n_release();

}

wherein,

set_pcie_pcie_core_reset_n_release()

The “arch/arm/plat-streamplug/misc.c” removes the core from the reset state as shown
below.

void set_pcie_pcie_core_reset_n_release(void)

{

 u32 val;

val = misc_readl((u32*)(GetOffset(sMiscRegs, pcie_ctr)));

 val |= PCIE_CTR_CORE_RST_N_MASK;

 misc_writel(val, (u32*)(GetOffset(sMiscRegs, pcie_ctr)));

}

and

set_pcie_pipew_core_reset_n_release()

the “arch/arm/plat-streamplug/misc.c” removes the pipe wrapper from the reset state as
shown below.

void set_pcie_pipew_core_reset_n_release(void)

{

 u32 val;

 val = misc_readl((u32*)(GetOffset(sMiscRegs, pcie_ctr)));

 val |= PCIE_CTR_PIPEW_RTS_N_MASK;

 misc_writel(val, (u32*)(GetOffset(sMiscRegs, pcie_ctr)));

}

Communication drivers UM1942

94/220 DocID028276 Rev 1

set_uport_reset_enable()

The “arch/arm/plat-streamplug/misc.c” puts the UPort controller into the reset state, as
shown below.

void set_uport_reset_enable(void)

{

 u32 val;

 val = misc_readl((u32*)(GetOffset(sMiscRegs, expi_sub_swrst_reg))
);

 val |= EXPI_SUB_UPORT_SWRST_MASK;

 misc_writel(val, (u32*)(GetOffset(sMiscRegs, expi_sub_swrst_reg))
);

}

set_uport_clock_disable()

The “arch/arm/plat-streamplug/misc.c”, switch off the UPort controller clock is shown below.

void set_uport_clock_disable(void)

{

 u32 val;

 val = misc_readl((u32*)(GetOffset(sMiscRegs, expi_sub_clk_enb_reg))
);

 val &= ~EXPI_SUB_UPORT_CLKENB_MASK;

 misc_writel(val, (u32*)(GetOffset(sMiscRegs, expi_sub_clk_enb_reg))
);

}

set_pcie_core_reset_n_setup()

This code puts the PCIe core into the reset state, as shown below.

void set_pcie_core_reset_n_setup(void)

{

 u32 val;

 val = misc_readl((u32*)(GetOffset(sMiscRegs, pcie_ctr)));

 val &= ~(PCIE_CTR_CORE_RST_N_MASK | PCIE_CTR_PIPEW_RTS_N_MASK);

 misc_writel(val, (u32*)(GetOffset(sMiscRegs, pcie_ctr)));

}

DocID028276 Rev 1 95/220

UM1942 Communication drivers

220

miphy_pipew_completion()

The “arch/arm/mach-streamplug/miphy.c” waits for the MIPHY Pipe Wrapper Configuration
completed as shown below.

int miphy_pipew_completion(void)

{

 unsigned char val;

 unsigned int ucount=0;

 do {

 val = miphy_read(MIPHY_RX_BUFFER_REG);

 if (val == MIPHY_PIPEW_COMPL) {

 return 0;

 }

 udelay(1);

 ucount++;

 } while (ucount <= (MIPHY_PIPEW_COMPL_TIMEOUT*100*1000));

 return 1;

}

After enabling the “TX_POLL bit from MIPHY” regs. space, it checks the MiPHY Pll/iDll.

int miphy_pll_idll_ready(void)

{

 unsigned char val;

 unsigned int ucount=0;

 do {

 val = miphy_read(MIPHY_STATUS_REG);

 if ((val & MIPHY_PLL_IDLL_MASK) == MIPHY_PLL_IDLL_MASK) {

 return 0;

 } udelay(1); ucount++;

 } while (ucount <= (MIPHY_PLL_IDLL_RDY_TIMEOUT*100*1000));

 return 1;

}

Communication drivers UM1942

96/220 DocID028276 Rev 1

PCIe root complex

The PCIe root complex device driver performs the following steps in order to complete the
PCIe interface initialization:

 PCIe header type 0 configuration.

 Enabled the inbound transactions, for which two memory windows ranges have been
opened within local DDR memory space:

– From 0x00000000 to 0x00047FFF

– From 0x10000000 to 0x7FFFFFFFF

 Enabled the entire PCIe AHB space for outbound transactions:

– From 0x40000000 to 0x4000FFFF; this memory window provides accesses in
configuration space. According to the STreamPlug design architecture, the PCIe
RC device driver supports connections until eight single function endpoints are
connected by a PCIe switch. The current PCIe RC device driver will interface with
only one single endpoint due to the absence of a switch. In that way the
configuration space of the single endpoint will be found within the range
[0x40000000-0x40000FFF].

 From 0x40010000 to 0x5FFFFFFF; this memory window provides 32-bit accesses in
memory space (with or without prefetchable option) of the target endpoint.

 From 0x60000000 to 0xBFFFFFFF; the local base addresses of the low memory
spaces defined for the root complex, have been set as:

– BAR0 = 0x60000000 with size 512 Mbyte

– BAR1 = 0x80000000 with size 1 Gbyte

 Enable the LTSSM machine state in order to negotiate the Link-up.

 INTA: HW interrupt RX handling is initialized; the PCIe INTA interrupt routine is
attached to the VIC line 3.

 MSI: SW interrupt RX handling is initialized; the PCIe RC will retrieve the information
about MSI from the target endpoint and set the MSI capabilities.

 Bus enumeration, in order to find the target endpoint in case the link is up.

PCIe target scanning, during that phase the endpoint will be configured according to its
capabilities in order to perform memory transactions in both directions.

Note that:

 Only one endpoint will be supported when the STreamPlug is configured as a root
complex

 “PCIE_LINK_REQ_RST_NOT_ITS” interrupt is left masked. Otherwise, it can cause
the link disconnection.

DocID028276 Rev 1 97/220

UM1942 Communication drivers

220

PCIe endpoint

The PCIe endpoint device driver performs the following steps in order to complete the PCIe
interface initialization:

 PCI header type 0 configuration

– Enable bus master

– Enable memory space access

– Base addresses mask, to define the size of the three inbound windows:

 BAR0 mask, 32-bit memory access size 128 Mbyte

 BAR1 mask, 32-bit memory access size 2 Mbyte

 BAR2 mask, 32-bit memory access size 2 Mbyte

 Enabled the address translation:

– The inbound transactions, for each BAR the following inbound window range has
been defined

 Local DDR memory, from 0x00000000 to 0x08000000

 Lower peripheral interface, from 0xD0000000 to 0xD01FFFFF

 CLCD peripheral controller, from 0xFC200000 to 0xFC21FFFF

– The outbound transactions; two memory windows ranges are defined to perform
outbound transactions towards the root complex:

 From 0x40000000 to 0x47FFFFFF, it will be translated into target RC memory space
starting from 0x00000000

 From 0x50000000 to 0x57FFFFFF, it will be translated into target RC memory space
starting from 0x01000000

4.10.2 PCIe kernel source and configuration

The following details correspond to the layout of the driver and kernel configuration.

The PCI driver stack is in “drivers/pci”. This is common for all PCI and PCIe controllers.

Table 15 illustrates the kernel Kconfig option required to be enabled for the PCIe.

These are required to enable kernel PCIe generic support, while the detailed options for the
two possible configuration (the root complex and endpoint) are listed below.

PCIe root complex

The driver of the root complex is in “arch/arm/mach-streamplug”:

 “dw_pcie.c”

 “streamplug1x_pcie_rev_350”, for IP revision 3.50

Table 15. PCIe configurations

Configuration Description

CONFIG_PCI Enable the PCI bus system.

CONFIG_PCIEPORTBUS Enable PCI express port bus support.

Communication drivers UM1942

98/220 DocID028276 Rev 1

Table 16 illustrates the kernel Kconfig options required to be enabled for the root complex.

PCIe endpoint

The driver of the endpoint is in “drivers/misc streamplug1x_pcie_gadget.c”.

Table 17 illustrates the kernel Kconfig options required to be enabled for the endpoint.

4.10.3 PCIe platform configuration

Due to mutual exclusive PCIe controllers, the root complex or endpoint platform
configuration is set by padmuxing. The files containing the platform configurations for both
types of supported PCIe controllers are in “arch/arm/mach-streamplug”:

 “streamplug1x.c”, where are defined the platform device structures

 “padmux.c”, where are defined the padmux option for configuring the PCIe controller as
a host or a device.

static struct pmx_dev_mode *pcie_modes[] = {

 &pcie_rc_mode,

 &pcie_ep_mode,

};

void parse_pcie_options(struct pmx_dev *dev, char *options)

{

 pcie_clk_opt = simple_strtoul(options, NULL, 10);

 printk(KERN_INFO "[M10]: %s pcie_clk_opt = %d", func ,
pcie_clk_opt);

}

DECLARE_PMX_DEV(pcie, pcie_modes, PMX_DEV_DISABLE, parse_pcie_options);

Table 16. PCIe root complex configurations

Configuration Description

CONFIG_DW_PCIE
Enable the support of the Synopsys designware

PCIe dual mode controller.

CONFIG_STREAMPLUG_PCIE_REV350 Enable the ST STreamPlug PCIe Rev 3.50.

CONFIG_PCI_MSI
Enable the drivers to enable MSI (message

signaled interrupts).

Table 17. PCIe endpoint configurations

Configuration Description

CONFIG_STREAMPLUG1X_PCIE_GADGET Enable ST STreamPlug PCIe device support.

DocID028276 Rev 1 99/220

UM1942 Communication drivers

220

PCIe root complex

The PCIe platform device configuration is shown below.

struct platform_device streamplug1x_pcie_host_device = {

 .name = "dw_pcie-rc",

 .id = 0,

 .dev = {

 .coherent_dma_mask = ~0,

 .dma_mask = &pcie_host_dmamask,

 .platform_data = &pcie_host_info,

 },

 .num_resources = ARRAY_SIZE(pcie_resources),

 .resource = pcie_resources,

};

and the “padmux” option to set the PCIe controller as a root complex is:

static struct pmx_mux_reg pcie_rc_regs[] = {

 { .reg = &pci_sata_sel, .value = 0x0 },

 { .reg = &pci_device_type_sel, .value = 0x1 },

};

static struct pmx_dev_mode pcie_rc_mode = {

 .name = "rc",

 .mux_regs = pcie_rc_regs,

 .mux_reg_cnt = ARRAY_SIZE(pcie_rc_regs),

 .platform_dev = &streamplug1x_pcie_host_device,

};

PCIe endpoint

The PCIe platform device configuration is shown below.

struct platform_device streamplug1x_pcie_gadget_device = {

 .name = "dw_pcie-ep",

 .id = 0,

 .dev = {

 .coherent_dma_mask = ~0,

 .dma_mask = &pcie_gadget_dmamask,

 .platform_data = &pcie_gadget_info, //pcie_gadget0_id,

 },

 .num_resources = ARRAY_SIZE(pcie_resources),

 .resource = pcie_resources,

};

and the “padmux” option to set the PCIe controller as an endpoint is:

static struct pmx_mux_reg pcie_ep_regs[] = {

 { .reg = &pci_sata_sel, .value = 0x0 },

 { .reg = &pci_device_type_sel, .value = 0x0 },

};

Communication drivers UM1942

100/220 DocID028276 Rev 1

static struct pmx_dev_mode pcie_ep_mode = {

 .name = "ep",

 .mux_regs = pcie_ep_regs,

 .mux_reg_cnt = ARRAY_SIZE(pcie_ep_regs),

 .platform_dev = &streamplug1x_pcie_gadget_device,

};

4.10.4 PCIe usage

To enable the PCIe RC/EP support at run-time it is necessary to configure the Linux kernel
command line using one of the options listed in Table 4 on page 22. Then PCIe
devices/registers can be managed/monitored using any of the following utilities or
commands:

 “lspci” is a utility for displaying information about all PCI buses in the system and all
devices connected to them. Its details can be seen with man lspci.

 “setpci” is a utility for querying and configuring PCI devices. Its details can also be seen
with man setpci.

 The PCI sysfs can be managed using the following commands: “cat/hexdump/echo”.
It's possible to access to PCI sysfs of the both PCIe host and device, below
“/sys/bus/pci/devices/0000\:0X\00.0/”, where X stays for a primary bus number at which
the root complex and endpoint are connected.

4.11 Serial advanced technology attachment (SATA)

This chapter describes the functional behavior and software interface of the STreamPlug
device driver for the serial advanced technology attachment (SATA) bus controller. The
SATA, also called Serial ATA, is the evolution of the Parallel ATA (PATA), a computer bus
interface to connect a host PC to physical storage devices such as hard disk drivers and
optical drivers.

The STreamPlug SATA controller uses the advanced host controller interface (AHCI), which
is a hardware mechanism (PCI class device) that allows software to communicate with
Serial ATA devices. In other words AHCI acts as a data movement engine between the
system memory and Serial ATA devices.

4.11.1 SATA software overview

The STreamPlug device driver has been inherited from the official Linux kernel AHCI
platform controller which uses the libATA library. The libATA provides an ATA driver API,
class transports for ATA and ATAPI devices, and SCSI/ATA translation for ATA devices
according to the T10 SAT specification. Features include power management, S.M.A.R.T.,
PATA/SATA, ATAPI, port multiplier, hot swapping and NCQ. For any more details have
a look to the following Wikipedia page: https://en.wikipedia.org/wiki/LibATA.

Furthermore, some Linux specific information about libATA can be found in the following text
document released together with the Linux kernel.

Documentation/DocBook/libata.tmpl

DocID028276 Rev 1 101/220

UM1942 Communication drivers

220

4.11.2 SATA kernel source and configuration

Table 18 lists source code files which have been modified to support the SATA on the
STreamPlug boards:

To enable the device driver it is necessary to enable the following Linux kernel configuration
options as shown in Table 19.

4.11.3 SATA platform configuration

Configuration of the device/driver through platform data or inherently in the driver itself.

4.11.4 SATA usage

To enable the SATA support at run-time it is necessary to configure the Linux kernel
command line using one of the options listed in Table 4 on page 22.

The following shows the log of the Linux kernel startup which detects an attached SATA
device.

Linux version 2.6.35-vcpu-okl_streamplug (restellil@restellil-laptop) (gcc
version 4.3.3 ?' (Sourcery G++ Lite 2009q1-203)) #32 Fri Feb 8 08:46:23
CET 2013

CPU: vCPUv5 [14069260] revision 0 (ARMv5TEJ) CPU: VIVT data cache, VIVT
instruction cache Machine: ST-STREAMPLUG

ATag virq 8, "timer_tick"

ATag microvisor_timer 39, 8, "timer_microvisor_timer"

ATag virq 9, "ksp_signal"

ATag ksp_agent 3a, 9, "ksp_ksp_agent"

ATag ksp_shared_mem fd100000, 6c00000, a00000, "shm_KSP_SHARED_MEMORY"
ATag vclient 3b, 20, a, "vserial_vtty0_vclient"

OKL4: vcpu_helper_page at 84c18000/01fff000

VMMU:paging_init: VMMU: Cache management handing is possibly not
correct (SDK-1545). Built 1 zonelists in Zone order, mobility grouping
on.Total pages: 21082

Kernel command line: console=vcon0,115200n8 root=/dev/mtdblock2
rootfstype=ext2,jffs2 ?' clcd=off sata=on:2 pcie=off usb=on:host
eth=off i2c=on ssp=on uart1=off uart2=off ?'

Table 18. SATA source code files

File Description

./drivers/ata/libahci.c Set OOB timing according the RXOOB_CLK_FREQ to be used.

./drivers/ata/ahci.h Add two vendor specific registers for the DWC SATA.

Table 19. Linux kernel configuration for SATA support

Configuration Description

CONFIG_ATA Activate serial and parallel ATA support

CONFIG_ATA_VERBOSE_ERROR Activate SATA verbose error reporting

CONFIG_SATA_AHCI_PLATFORM Activate the AHCI SATA platform

Communication drivers UM1942

102/220 DocID028276 Rev 1

can=off firda=off fsmc=off sport=off ts=off

[M10]: parse_sata_options sata_clk_opt = 2

PID hash table entries: 512 (order: -1, 2048 bytes)

Dentry cache hash table entries: 16384 (order: 4, 65536 bytes) Inode-
cache hash table entries: 8192 (order: 3, 32768 bytes) Memory: 83MB
= 83MB total

Memory: 72868k/72868k available, 12124k reserved, 0K highmem

Virtual Kernel memory layout:

vector : 0x01fff000 - 0x02000000 (4 kB)

fixmap : 0xfff00000 - 0xfffe0000 (896 kB)

DMA : 0xef800000 - 0xf0000000 (8 MB)

Vmalloc : 0x89800000 - 0xe4000000 (1448 MB)

lowmem : 0x84000000 - 0x89300000 (83 MB)

modules : 0x83000000 - 0x84000000 (16 MB)

.init : 0x84000000 - 0x84022000 (136 kB)

.text : 0x84022000 - 0x8443b000 (4196 kB)

.data : 0x84454000 - 0x84487f80 (208 kB)

Hierarchical RCU implementation.

Verbose stalled-CPUs detection is disabled. NR_IRQS:512

Console: colour dummy device 80x30

Calibrating delay loop... 164.24 BogoMIPS (lpj=821248)

pid_max: default: 4096 minimum: 301

Mount-cache hash table entries: 512

CPU: Testing write buffer coherency:

ok

VCPU support v1.0

NET: Registered protocol family 16

padmux: dev name sata

padmux: dev name usb

padmux: dev name i2c

padmux: dev name ssp

 [STreamPlugDBG]: miphy input clock for sata is qfs4

ENTER set_reference_clock

MiPHY Input clock provided by QFS EXIT set_reference_clock

Serial: AMBA PL011 UART driver

bio: create slab <bio-0> at 0 vServices Framework 1.0

SCSI subsystem initialized

usbcore: registered new interface driver usbfs

usbcore: registered new interface driver hub

usbcore: registered new device driver usb

Advanced Linux Sound Architecture Driver Version 1.0.23.

NET: Registered protocol family 23

Switching to clocksource microvisor timer

NET: Registered protocol family 2

IP route cache hash table entries: 1024 (order: 0, 4096 bytes)

DocID028276 Rev 1 103/220

UM1942 Communication drivers

220

TCP established hash table entries: 4096 (order: 3, 32768 bytes)

TCP bind hash table entries: 4096 (order: 2, 16384 bytes)

TCP: Hash tables configured (established 4096 bind 4096)

TCP reno registered

NET: Registered protocol family 1

Trying to unpack rootfs image as initramfs... Freeing initrd memory:
6584K

VFS: Disk quotas dquot_6.5.2

Dquot-cache hash table entries: 1024 (order 0, 4096 bytes)

JFFS2 version 2.2. (NAND) © 2001-2006 Red Hat, Inc.

fuse init (API version 7.14)

msgmni has been set to 155

alg: No test for stdrng (krng)

io scheduler noop registered

io scheduler deadline registered

io scheduler cfq registered (default)

vServices Microvisor Transport v1.0

OKL4 virtual console init

console [vcon0] enabled

brd: module loaded

st: Version 20081215, fixed bufsize 32768, s/g segs 256

PIPEW COMPLETION!!!!!

MIPHY PLL LOCKED!!!!!

reset ff

reset 0

ahci ahci: forcing PORTS_IMPL to 0x1

HBA Capabilities - 0x6726ff80

HBA Capabilities after write 0 - 0x6726ff80

HBA Init after write 0x1 to PI register

PI register read - 0x1

Initializing HBA ... Done

TESTR register read - 0x0

OOB register read - 0x5080f19

Wrote OOBR register value=8204080c for 30 MHz

P0SCTL register read - 0x0

Communication drivers UM1942

104/220 DocID028276 Rev 1

TESTR register read - 0x0

OOB register read - 0x204080c

Wrote OOBR register value=8204080c for 30 MHz

ahci ahci: AHCI 0001.0300 32 slots 1 ports 3 Gbps 0x1 impl platform
mode

ahci ahci: flags: ncq sntf pm led clo only pmp pio slum part ccc apst

scsi0 : ahci

ata1: SATA max UDMA/133 irq_stat 0x00400040, connection status changed
irq 3

smi smi: mtd .name=w25q64_bank0 .size=800000(8M)

smi smi: .erasesize = 0x10000(64K)

Creating 1 MTD partitions on "w25q64_bank0":

0x000000000000-0x000000800000 : "Reserved"

smi smi: mtd .name=w25q64_bank1 .size=800000(8M)

smi smi: .erasesize = 0x10000(64K)

Creating 1 MTD partitions on "w25q64_bank1":

0x000000000000-0x000000800000 : "Auxiliary Root File System"

smi smi: mtd .name=w25q64_bank2 .size=800000(8M)

smi smi: .erasesize = 0x10000(64K)

Creating 1 MTD partitions on "w25q64_bank2":

0x000000000000-0x000000800000 : "Root File System"

ssp-pl022 ssp-pl022.0: ARM PL022 driver, device ID: 0x00241022

pl022: mapped registers from 0xd0100000 to 8987c000

m25p80 spi0.0: non-JEDEC variant of m25p80

m25p80 spi0.0: m25p80 (1024 Kbytes)

Creating 1 MTD partitions on "w25x40":

0x000000000000-0x000000080000 : "External SPI Flash"

CAN device driver interface

usbcore: registered new interface driver asix

 usbcore: registered new interface driver cdc_ether

usbcore: registered new interface driver cdc_eem

usbcore: registered new interface driver net1080

ehci_hcd: USB 2.0 'Enhanced' Host Controller (EHCI) Driver
streamplug_ehci_hcd_drv_probe 0x89880000

streamplug-ehci streamplug-ehci: STREAMPLUG EHCI

streamplug-ehci streamplug-ehci: new USB bus registered, assigned bus
number 1

streamplug-ehci streamplug-ehci: irq 5, io mem 0xe1800000

streamplug-ehci streamplug-ehci: USB 0.0 started, EHCI 1.00

hub 1-0:1.0: USB hub found

hub 1-0:1.0: 1 port detected

ohci_hcd: USB 1.1 'Open' Host Controller (OHCI) Driver streamplug-ohci
streamplug-ohci.0: STREAMPLUG OHCI

DocID028276 Rev 1 105/220

UM1942 Communication drivers

220

streamplug-ohci streamplug-ohci.0: new USB bus registered, assigned bus
number 2 streamplug-ohci streamplug-ohci.0: irq 5, io mem 0xe1900000

hub 2-0:1.0: USB hub found hub 2-0:1.0: 1 port detected Initializing
USB Mass Storage driver...

usbcore: registered new interface driver usb-storage

USB Mass Storage support registered. Loading designware_udc:

rtc-streamplug rtc-streamplug: rtc core: registered rtc-streamplug as
rtc0 i2c /dev entries driver

sp805-wdt wdt: registration successful

dw_dmac: DesignWare DMA Controller, 8 channels

No device for DAI AKCODEC

set_qfs2_clock - qfs_id = 5

ALSA device list:

No soundcards found. TCP cubic registered

NET: Registered protocol family 10

IPv6 over IPv4 tunneling driver

NET: Registered protocol family 17

can: controller area network core (rev 20090105 abi 8) NET: Registered
protocol family 29

can: raw protocol (rev 20090105)

can: broadcast manager protocol (rev 20090105 t) IrCOMM protocol (Dag
Brattli)

802.1Q VLAN Support v1.8 Ben Greear <greearb@candelatech.com> All bugs
added by David S. Miller <davem@redhat.com>

rtc-streamplug rtc-streamplug: hctosys: invalid date/time ata1: SATA
link up 1.5 Gbps (SStatus 113 SControl 300) ata1.00: ATA-8: KINGSTON
SS100S28G, 110512, max UDMA/100 ata1.00: 15649200 sectors, multi 16:
LBA48 NCQ (depth 31/32) ata1.00: configured for UDMA/100

scsi 0:0:0:0: Direct-AccessATAKINGSTON SS100S2 1105 PQ: 0 ANSI: 5 sd
0:0:0:0: Attached scsi generic sg0 type 0

sd 0:0:0:0: [sda] 15649200 512-byte logical blocks: (8.01 GB/7.46 GiB)

sd 0:0:0:0: [sda] Write Protect is off

sd 0:0:0:0: [sda] Write cache: enabled, read cache: enabled, doesn't
support DPO or FUA

sda:

sda1

sd 0:0:0:0: [sda] Attached SCSI disk

Freeing init memory: 136K

STreamPlug login: root

Please note that the device is enumerated by kernel as the SCSI device, “/dev/sda1” (“sda:
sda1”). The user can print the partition table of the SATA driver using the sfdisk command as
shown below.

$ sfdisk -ls

/dev/sda: 7824600

Disk /dev/sda: 974 cylinders, 255 heads, 63 sectors/track

Warning: The partition table looks like it was made

Communication drivers UM1942

106/220 DocID028276 Rev 1

for C/H/S=*/246/40 (instead of 974/255/63).

For this listing I'll assume that geometry.

Units = cylinders of 5038080 bytes, blocks of 1024 bytes, counting
from 0

Device Boot Start End #cyls #blocks Id System

/dev/sda10+ 1590- 1590- 7822336 7 NTFS

start: (c,h,s) expected (0,51,9) found (0,32,33)

end: (c,h,s) expected (1023,245,40) found (973,245,40)

/dev/sda20 -0 0 0 Empty

/dev/sda30 -0 0 0 Empty

/dev/sda40 -0 0 0 Empty total: 7824600 blocks

Then, at the user space level, commands are provided to mount the external SATA device
and to access the corresponding filesystem. Therefore, the user may mount a FAT32
filesystem on the SATA device (“/dev/sda1”) into the folder “/mnt” just using one of the
following command:

$ mount /dev/sda1 /mnt

If the SATA drive is formatted as NTFS filesystem, use:

$ ntfs-3g /dev/sda1 /mnt

The folder examples/sata, delivered with the LSP package, includes a “readme” file that
explains a procedure to test the SATA bus interface.

DocID028276 Rev 1 107/220

UM1942 Memory technology devices (MTD)

220

5 Memory technology devices (MTD)

Memory technology devices (MTD) is a generic subsystem for handling memory technology
devices under Linux. MTD provides an abstraction layer for raw Flash devices. It makes it
possible to use the same API when working with different Flash types and technologies,
e.g.: NAND, OneNAND, NOR, AND, ECC'd NOR, etc.

5.1 Linux MTD framework

MTD provides a generic interface between the device drivers and the upper layers of the
system.

Device drivers do not need to know about the storage formats used, such as FTL, FFS2,
etc. They only need to provide simple routines for read, write and erase. The presentation of
the device's contents to the user in an appropriate form will be handled by the upper layers
of the system.

The MTD system is divided into two types of the module: “users” and “drivers”. Drivers are
the modules which provide raw read/write/erase access to physical memory devices. Users
are like YAFFS or JFFS, they are the modules which use MTD drivers and provide a higher
level interface to the user space. JFFS is a file system which runs directly on the Flash, and
MTDBLOCK performs no translation.

The user space application can access the Flash device content using the mtdblock nodes
(“/dev/mtdblockN”) and the mtdchar nodes (“/dev/mtdN”), either in the raw mode, for
example using the MTD utils command, or in the logical mode, by mounting a file system
(usually JFFS2) and accessing its files through open/read/write system calls.

MTD kernel configuration

Table 20 is the detail corresponding to the layout of the kernel configuration.

Table 20. MTD configurations

Configuration Description

CONFIG_MTD Enable memory technology devices.

CONFIG_MTD_CHAR
Provide a character device for each MTD device present in the system, allowing the user
to read and write directly to the memory chips, and also use ioctl() to obtain information

about the device, or to erase parts of it.

Memory technology devices (MTD) UM1942

108/220 DocID028276 Rev 1

5.2 Accessing to MTD devices

5.2.1 Raw access from user space

MTD utils can be used to access on Flash devices via the MTD layer. A set of MTD utilities
are available in the STreamPlug filesystem.

The MTD project provides a number of helpful tools for handling Flash such as:

 “mtd_debug”: gets info, read and write data or erase the specified MTD device.

 “flash_erase”: erases an erase block of Flash

 “flashcp”: copies data into MTD Flash

 “flash_info”: displays information about Flash devices

 “flash_lock”: lock Flash pages to prevent writing

 “flash_unlock”: unlock Flash pages to allow writing

Information about all MTD devices may be get using the “mtdinfo -a” command:

mtdinfo -a

Count of MTD devices: 1

Present MTD devices: mtd0

Sysfs interface supported: yes

mtd0

Name: rootfs

Type: nor

Eraseblock size: 65536 bytes, 64.0 KiB

Amount of eraseblocks: 160 (10485760 bytes, 10.0 MiB)

Minimum input/output unit size: 1 byte

Sub-page size: 1 byte

Character device major/minor: 90:0

Bad blocks are allowed: false

Device is writable: true

At the startup three devices are detected by Linux. They are the NOR Flash memories,
through the SMI interface.

5.2.2 Raw access from kernel space

MTD devices can be directly accessed through MTD calls such as “mtd_read”, “mtd_erase”
and “mtd_write” can be used to read, erase and write to MTD devices.

In this particular Linux distribution provides support for NAND, NOR Flashes and SRAM
chips. MTD calls are mapped on specific functions for each different drivers (one for every
device). Refer to Section 5.3: Flexible static memory controller (FSMC) on page 112.

The first MTD information is the mtd_info structure. It is retrieved by iterating through all
registered MTD devices. This structure is defined in “include/linux/mtd/mtd.h”. This structure
contains all necessary informations for the device configuration (the size of the whole
device, the minimum size can be erased, etc.), without neglecting its main feature which
consists in interfacing between the kernel space and user space.

The following code snippet shows a portion of the “mtd_info” structure.

DocID028276 Rev 1 109/220

UM1942 Memory technology devices (MTD)

220

/* following is defined in 'include/linux/mtd/mtd.h' */

struct mtd_info {

 u_char type;

 uint32_t flags;

 uint64_t size;// Total size of the MTD

 /* "Major" erase size for the device.

 */

 uint32_t erasesize;

 /* Minimal writable flash unit size.

 * Any driver registering a struct mtd_info must ensure a writesize
of

 * 1 or larger.

 */

 uint32_t writesize;

 uint32_t oobsize; // Amount of OOB data per block (e.g. 16)

 uint32_t oobavail; // Available OOB bytes per block

 /*

 * If erasesize is a power of 2 then the shift is stored in

 * erasesize_shift otherwise erasesize_shift is zero. Ditto writesize.

 */

 unsigned int erasesize_shift;

 unsigned int writesize_shift;

 /* Masks based on erasesize_shift and writesize_shift */

 unsigned int erasesize_mask;

 unsigned int writesize_mask;

 // Kernel-only stuff starts here.

 const char *name;

 int index;

 /* ecc layout structure pointer - read only ! */

 struct nand_ecclayout *ecclayout;

 /* Data for variable erase regions. If numeraseregions is zero,

 * it means that the whole device has erasesize as given above.

 */

 int numeraseregions;

 struct mtd_erase_region_info *eraseregions;

 /*

 * Erase is an asynchronous operation.Device drivers are supposed

 * to call instr->callback() whenever the operation completes, even

 * if it completes with a failure.

Memory technology devices (MTD) UM1942

110/220 DocID028276 Rev 1

 * Callers are supposed to pass a callback function and wait for it

 * to be called before writing to the block.

 */

 int (*erase) (struct mtd_info *mtd, struct erase_info *instr);

 /* This stuff for eXecute-In-Place */

 /* phys is optional and may be set to NULL */

 int (*point) (struct mtd_info *mtd, loff_t from, size_t len,

size_t *retlen, void **virt, resource_size_t *phys);

 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */

 void (*unpoint) (struct mtd_info *mtd, loff_t from, size_t len);

 /* Allow NOMMU mmap() to directly map the device (if not NULL)

 * - return the address to which the offset maps

 * - return -ENOSYS to indicate refusal to do the mapping

 */

 unsigned long (*get_unmapped_area) (struct mtd_info *mtd,

 unsigned long len,

 unsigned long offset,

 unsigned long flags);

 /* Backing device capabilities for this device

 * - provides mmap capabilities

 */

 struct backing_dev_info *backing_dev_info;

 int (*read) (struct mtd_info *mtd, loff_t from, size_t len, size_t
*retlen, u_char *buf);

 int (*write) (struct mtd_info *mtd, loff_t to, size_t len, size_t
*retlen, const u_char *buf);

 int (*panic_write) (struct mtd_info *mtd, loff_t to, size_t len, size_t
*retlen, const u_char *buf);

 int (*read_oob) (struct mtd_info *mtd, loff_t from,

 struct mtd_oob_ops *ops);

 int (*write_oob) (struct mtd_info *mtd, loff_t to,

 struct mtd_oob_ops *ops);

 /*

 * Methods to access the protection register area, present in some

 * flash devices. The user data is one time programmable but the

 * factory data is read only.

 */

 int (*get_fact_prot_info) (struct mtd_info *mtd, struct otp_info *buf,
size_t len);

DocID028276 Rev 1 111/220

UM1942 Memory technology devices (MTD)

220

 int (*read_fact_prot_reg) (struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, u_char *buf);

 int (*get_user_prot_info) (struct mtd_info *mtd, struct otp_info *buf,
size_t len);

 int (*read_user_prot_reg) (struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, u_char *buf);

 int (*write_user_prot_reg) (struct mtd_info *mtd, loff_t from, size_t
len, size_t *retlen, u_char *buf);

 int (*lock_user_prot_reg) (struct mtd_info *mtd, loff_t from, size_t
len);

 /* kvec-based read/write methods.

 NB: The 'count' parameter is the number of _vectors_, each of

 which contains an (ofs, len) tuple.

 */

 int (*writev) (struct mtd_info *mtd, const struct kvec *vecs, unsigned
long count, loff_t to, size_t *retlen);

 /* Sync */

 void (*sync) (struct mtd_info *mtd);

 /* Chip-supported device locking */

 int (*lock) (struct mtd_info *mtd, loff_t ofs, uint64_t len);

 int (*unlock) (struct mtd_info *mtd, loff_t ofs, uint64_t len);

 /* Power Management functions */

 int (*suspend) (struct mtd_info *mtd);

 void (*resume) (struct mtd_info *mtd);

 /* Bad block management functions */

 int (*block_isbad) (struct mtd_info *mtd, loff_t ofs);

 int (*block_markbad) (struct mtd_info *mtd, loff_t ofs);

 struct notifier_block reboot_notifier; /* default mode before reboot */

/* ECC status information */

 struct mtd_ecc_stats ecc_stats;

 /* Subpage shift (NAND) */

 int subpage_sft;

 void *priv;

 struct module *owner;

 struct device dev;

 int usecount;

 /* If the driver is something smart, like UBI, it may need to maintain

Memory technology devices (MTD) UM1942

112/220 DocID028276 Rev 1

 * its own reference counting. The below functions are only for
driver.

 * The driver may register its callbacks. These callbacks are not

 * supposed to be called by MTD users */

 int (*get_device) (struct mtd_info *mtd);

 void (*put_device) (struct mtd_info *mtd);

};

After retrieving the “mtd_info” structure for the specific MTD device, reading (or writing) is
relatively simple.

5.2.3 Access through file system from user space

The MTD partition can be mounted using a file system and then can be used. The NOR
Flash partition is only supported by JFFS2. Therefore, make sure that a valid JFFS2 image
is already present in the partition to avoid getting a lot of JFFS2 error messages.

$ mount -t jffs2 /dev/mtdblock3 /mnt

$ cp /tmp/file_name/mnt/

$ ls /mnt file_name

5.3 Flexible static memory controller (FSMC)

The FSMC can access a wide variety of memory. NAND and NOR Flashes and four SRAM
chips are supported in this Linux distribution and their relative device drivers can be built as
a module.

The following device driver modules are loadable using the modprobe command:

 “fsmc_nand.ko” for NAND Flash (located below
“/lib/modules/2.6.35/Kernel/drivers/mtd/nand/)”

 “physmap.ko” for NOR Flash (located below
“/lib/modules/2.6.35/Kernel/drivers/mtd/maps)”.

DocID028276 Rev 1 113/220

UM1942 Memory technology devices (MTD)

220

A NAND Flash example is:

modprobe fsmc_nand.ko

As a result, a new MTD device is created. (i.e.: “mtd3”).

 # mtdinfo -m3 mtd3

 Name: External NAND Flash

 Type: NAND

 Erase block size: 16384 bytes, 16.0 KiB

 Amount of erase blocks: 4096 (67108864 bytes, 64.0 MiB) minimum input/output unit
size: 512 bytes

 Subpage size: 512 bytes OOB size:16 bytes character device major/minor:
90:6

 Bad blocks are allowed: true

 Device is writable: true

In order to access to the memory device, it is necessary to get the device major and minor
numbers. These numbers are used to create a special character file with the command
“mknod”.

mknod /dev/mtd_nand c 90 6

Finally, FSMC functionalities may be tested using the provided MTD utilities.

5.3.1 NAND, FSMC

The NAND Flash is a non-volatile memory with a data access width of 8 or 16 bits. The read
and write operations are done in pages (typically 512 or 2048 bytes) while the erase
operation is done in erase blocks (the block size is typically of 16 Kbits or 64 Kbits). The
NAND Flash is I/O mapped and requires a relatively complicated driver for any operation.

Nowadays, the NAND technology allows bigger size parts at a lower cost, but also with a
lower reliability. The main issues with NAND technology are bit flipping and bad blocks. To
correct bit flipping, the NAND controller and the driver use the error detection/correction
code (EDC/ECC). The second issue requires the use of bad block management techniques.

The higher density, lower cost, faster write/erase times, and a longer rewrite life expectancy
make the NAND Flash especially well suited for consumer media applications.

Memory technology devices (MTD) UM1942

114/220 DocID028276 Rev 1

NAND, FSMC software overview

The NAND device driver layer sits between the FSMC HW controller and the Linux MTD
interface of the SW stack. The NAND device driver provides all the necessary functions for
a file system via the standard Linux MTD interface at the top layer and controls the
functionality of the lower layer by using the available API as shown in Figure 10.

Figure 10. NAND FSMC software stack

Users can erase, read and write to the NAND devices through the standard MTD interface.

NAND, FSMC source and configuration

Table 21 lists the details corresponding to layout of the kernel configuration:

Table 21. FSMC NAND configurations

Configuration Description

CONFIG_MTD
Provide the generic support for MTD drivers to register themselves

with the kernel.

CONFIG_MTD_NAND Enable support for accessing all types of NAND Flash devices.

CONFIG_MTD_NAND_FSMC
Enable support for NAND Flash chips on the STMicroelectronics

flexible static memory controller (FSMC).

mount

JFFS2

mtd-utils User space

Kernel space

Hardware

FSMC NAND driver

FSMC controller H/W

Linux MTD interface

AM039717

DocID028276 Rev 1 115/220

UM1942 Memory technology devices (MTD)

220

NAND, FSMC platform configuration

This section lists the driver's platform interface and its possible configuration. The default
configuration of the FSMC controller depends on the platform data passed in the board
definition under the machine folder. The platform configuration is implemented in the
following routine:

/* set nand device's plat data */

/* following is defined in 'arch/arm/mach-
streamplug/streamplug_devel_board.c' */

/* set nand device's plat data */

fsmc_nand_set_plat_data(&streamplug1x_fsmc_nand_device,

 NAND_SKIP_BBTSCAN,

 FSMC_DEVICE_WIDTH8);

/* following is defined in 'arch/arm/plat-streamplug/include/plat/fsmc.h'
*/

/* This function is used to set platform data field of pdev->dev */

static inline void fsmc_nand_set_plat_data(struct platform_device *pdev,

 struct mtd_partition *partitions, unsigned int nr_partitions,

 unsigned int options, unsigned int width, unsigned int init_to_do)

{

 struct fsmc_nand_platform_data *plat_data;

 plat_data = dev_get_platdata(&pdev->dev);

 if (partitions) {

 plat_data->partitions = partitions;

 plat_data->nr_partitions = nr_partitions;

 }

 plat_data->ale_off = PLAT_NAND_ALE;

 plat_data->cle_off = PLAT_NAND_CLE;

 plat_data->options = options;

 plat_data->width = width;

}

NAND, FSMC usage

To enable the FSMC NAND support at run-time it is necessary to configure the Linux kernel
command line using one of the options listed in Table 4 on page 22.

The following utilities are specific for using the NAND Flash through the MTD interface:

nandtest - Perform Integrity Data test on the specified Nand mtd device.

nandwrite - Writes an input file to the specified Nand mtd device.

nanddump - Dumps the contents of a Nand mtd partition.

Memory technology devices (MTD) UM1942

116/220 DocID028276 Rev 1

5.3.2 Parallel NOR, FSMC

Reading from the NOR Flash is similar to reading from a random access memory, the
provided address and data bus are mapped correctly. Because of this, most
microprocessors can use the NOR Flash memory as an execute in place (XIP) memory,
meaning that programs stored in the NOR Flash can be executed directly from the NOR
Flash without needing to be copied into the RAM first. The NOR Flash may be programmed
in a random access manner similar to reading. Programming changes bits from a logical
one to a zero. Bits that are already zero are left unchanged. Erasure must happen a block at
a time, and resets all the bits in the erased block back to logical one. Typical block sizes are
64, 128, or 256 Kbytes.

Bad block management is a relatively new feature in NOR chips. In older NOR devices not
supporting bad block management, the software or the device driver controlling the memory
chip must correct for blocks that wear out, or the device will cease to work reliably.

The specific commands used to lock, unlock, program, or erase NOR memories differ for
each manufacturer. To avoid needing unique driver software for every device made, special
common Flash memory interface (CFI) commands allow the device to identify itself and its
critical operating parameters.

Besides using the NOR memory as a random access ROM, it can also be used as a storage
device by taking advantage of random access programming. Some devices offer read-
while-write functionality so that the code continues to execute even while a program or
erase operation is occurring in the background. For sequential data writes, NOR Flash chips
typically have slow write speeds, compared with the NAND Flash.

DocID028276 Rev 1 117/220

UM1942 Memory technology devices (MTD)

220

Parallel NOR, FSMC software overview

The NOR device driver sits on the top of the FSMC HW controller and provides all the
necessary functions for a file system via the standard Linux MTD interface. The NOR device
driver controls the functionality of the FSMC by using the API of the FSMC driver.

The user can access, read and write to the NOR devices through the standard MTD
interface as illustrated in Figure 11.

Figure 11. NOR FSMC stack

Parallel NOR, FSMC source and configuration

The NOR Flash device driver provides a mapping driver which allows the NOR Flash and
ROM driver code to communicate with chips which are mapped physically into the CPU's
memory. The physical address and size and bus width of the Flash chips being used will
need to be configured either statically with config options or at run-time.

mount

JFFS2

mtd-utils
User space

Kernel space

Hardware

FSMC NOR driver

FSMC controller H/W

Linux MTD interface

AM039718

Memory technology devices (MTD) UM1942

118/220 DocID028276 Rev 1

Table 22 lists the details corresponding to the layout of the driver and kernel configuration.

The FSMC physmap driver is present in “drivers/mtd/maps/physmap.c”.

Parallel NOR, FSMC platform configuration

This section lists the driver's platform interface and its possible configuration. Default
configuration of the FSMC controller depends on the platform data passed.

/* set default physmap's plat data */

/* following is defined in 'arch/arm/mach-
streamplug/streamplug_devel_board.c' */

/* fsmc NOR partition info */

static struct mtd_partition fsmc_nor_partition_info[] = {

 PARTITION("External NOR Flash", 0x00000000, SZ_64M),

};

/* NOR 16 */

/* initialize fsmc related data in fsmc plat data */

fsmc_init_nor_board_info(&streamplug1x_fsmc_nor_device,

 fsmc_nor_partition_info,

 ARRAY_SIZE(fsmc_nor_partition_info),

 FSMC_DEVICE_WIDTH16);

/* following is defined in 'arch/arm/mach-streamplug/fsmc-nor.c' */

void init fsmc_init_nor_board_info(struct platform_device *pdev,

 struct mtd_partition *partitions,

 unsigned int nr_partitions, unsigned int width)

{

 fsmc_nor_set_plat_data(pdev, partitions, nr_partitions, width);

}

/* following is defined in 'arch/arm/plat-streamplug/include/plat/fsmc.h'
*/

static inline void fsmc_nor_set_plat_data(struct platform_device *pdev,

 struct mtd_partition *partitions,

Table 22. FSMC NOR configurations

Configuration Description

CONFIG_MTD
Provide the generic support for MTD drivers to register

themselves with the kernel.

CONFIG_MTD_PHYSMAP Allow mapping of the NOR Flash in the physical memory.

CONFIG_STREAMPLUG_FSMC Enable the AHB master interface to FSMC memories.

DocID028276 Rev 1 119/220

UM1942 Memory technology devices (MTD)

220

 unsigned int nr_partitions, unsigned int width)

{

 struct physmap_flash_data *plat_data;

 plat_data = dev_get_platdata(&pdev->dev);

 if (partitions) {

 plat_data->parts = partitions;

 plat_data->nr_parts = nr_partitions;

 }

 plat_data->width = width;

}

Parallel NOR, FSMC usage

Refer to Section 5.1: Linux MTD framework on page 107 for details on using the NOR Flash
through the MTD interface both from the kernel and user space.

5.3.3 Static RAM (SRAM), flexible static memory controller

The SRAM (Static RAM) is a type of the RAM that stores data in transistor circuits. The
static RAM is faster than the dynamic RAM and does not need to be continuously refreshed.

The family of the SRAM memory can be divided into:

 Asynchronous - independent of clock frequency, data in and data out are controlled by
an address transistor.

 Synchronous - all timing are initiated by the clock edge. The address, data and control
signal are associates with the clock signals.

The FSMC device driver flexibility allows supporting the asynchronous static SRAM.

Asynchronous SRAMs are available from 4 kbytes to 64 Mbytes. The fast access time of the
SRAM makes the asynchronous SRAM appropriate as a main memory for small cache less
embedded processors used in everything from industrial electronics and measurement
systems to hard disks and networking equipment, among many other applications. They are
used in various applications like switches and routers, IP phones, to automotive electronics.

Memory technology devices (MTD) UM1942

120/220 DocID028276 Rev 1

SRAM software overview

The SRAM device driver sits on the top of the FSMC HW controller and provides all the
necessary functions for a file system via the standard Linux MTD interface as shown in
Figure 12.

Figure 12. SRAM software stack

The FSMC device driver support is limited to asynchronous devices, but the controller also
supports synchronous devices.

mount

JFFS2

mtd-utils User space

Kernel space

Hardware

FSMC SRAM driver

FSMC controller H/W

Linux MTD interface

AM039719

DocID028276 Rev 1 121/220

UM1942 Memory technology devices (MTD)

220

SRAM kernel source and configuration

Table 23 lists the details corresponding to the layout of the driver and kernel configuration:

SRAM platform configuration

This section lists the driver's platform interface and its possible configuration. Default
configuration of the FSMC controller depends on the platform data passed.

/* following is defined in 'arch/arm/mach-
streamplug/streamplug_devel_board.c' */

/* fsmc SRAM partition info */

static struct mtd_partition fsmc_sram_partition_info[] = {

 PARTITION("External SRAM Bank0", 0x00000000, SZ_1M),

 PARTITION("External SRAM Bank1", 0x01000000, SZ_1M),

 PARTITION("External SRAM Bank2", 0x02000000, SZ_1M),

 PARTITION("External SRAM Bank3", 0x03000000, SZ_1M),

};

/* SRAM 16*/

/* initialize fsmc related data in fsmc plat data */

fsmc_init_sram_board_info(&streamplug1x_fsmc_sram_device,

 fsmc_sram_partition_info,
ARRAY_SIZE(fsmc_sram_partition_info),FSMC_DEVICE_WIDTH16);

/* following is defined in 'arch/arm/mach-streamplug/fsmc-sram.c' */

void init fsmc_init_sram_board_info(struct platform_device *pdev,

 struct mtd_partition *partitions, unsigned int nr_partitions,

 unsigned int width)

{

 fsmc_sram_set_plat_data(pdev, partitions, nr_partitions, width);

}

/* following is defined in 'arch/arm/plat-streamplug/include/plat/fsmc.h'
*/

static inline void fsmc_sram_set_plat_data(struct platform_device *pdev,

 struct mtd_partition *partitions, unsigned int nr_partitions,

 unsigned int width)

Table 23. FSMC SCRAM configurations

Configuration Description

CONFIG_MTD
Provide the generic support for MTD drivers to register

themselves with the kernel.

CONFIG_MTD_PLATRAM
Map SRAM Flash for RAM areas described via the platform

device system (MTD-RAM).

CONFIG_STREAMPLUG_FSMC Enable the AHB master interface to FSMC memories.

Memory technology devices (MTD) UM1942

122/220 DocID028276 Rev 1

{

 static struct platdata_mtd_ram *plat_data;

 plat_data = dev_get_platdata(&pdev->dev);

 if (partitions) {

 plat_data->partitions = partitions;

 plat_data->nr_partitions = nr_partitions;

 }

 plat_data->bankwidth = width;

}

SRAM usage

To enable the FSMC-SRAM support at run-time it is necessary to configure the Linux kernel
command line using one of the options listed in Table 4 on page 22.

Please refer to Section 5.1: Linux MTD framework on page 107 for details on using the
SRAM Flash through the MTD interface from both - the kernel and user space.

5.4 Serial memory interface (SMI)

The serial NOR Flash is one of the primary method for booting the system. This section
describes the SMI controller driver used to access serial NOR devices.

5.4.1 SMI hardware overview

The NOR Flash is a non-volatile memory which is memory mapped and has a standard
serial (SPI) memory interface. The NOR Flash is well suited to be used as code storage
because of its reliability, fast read operations, and random access capabilities.

Because the code can be directly executed in the place, the NOR Flash is ideal for storing
the firmware, boot code, operating systems, and other data that changes infrequently. The
NOR Flash memory has traditionally been used to store relatively small amounts of the
executable code for embedded computing devices such as PDAs and cell phones.

The serial NOR Flash on the STreamPlug platform is driven by an SMI (serial memory
interface) controller. The serial memory interface (SMI), acting as an AHB slave interface
(32-, 16- or 8-bit), manages the clock, data access and status of the NOR Flash memory.
The main features of SMI are:

 Supports a group of the SPI-compatible Flash and EEPROM devices.

 The SMI clock signal (SMI_CLK) is generated by the SMI using the clock provided by
the AHB bus.

DocID028276 Rev 1 123/220

UM1942 Memory technology devices (MTD)

220

5.4.2 SMI software overview

The SMI serial NOR device driver sits on the top of the SMI controller and provides all
necessary functions for a file system via the standard Linux MTD interface.

The user can erase, read and write to the serial NOR devices through the standard MTD
interface, as illustrated in Figure 13.

Figure 13. SMI software stack

mount

JFFS2

mtd-utils User space

Kernel space

Hardware

FSMC SMI driver

SMI controller H/W

Linux MTD interface

AM039720

Memory technology devices (MTD) UM1942

124/220 DocID028276 Rev 1

5.4.3 SMI kernel source and configuration

Table 24 lists the details corresponding to the layout of the driver and kernel configuration:

The SMI controller driver is present in “drivers/mtd/devices/streamplug_smi.c”.

The platform data defining NOR partitioning and controller configuration is present in
“arch/arm/mach-streamplug/streamplug_devel_board.c”.

5.4.4 SMI platform configuration

This section lists the driver's platform interface and its possible configuration.

SMI driver configuration

The default configuration of the SMI controller depends on the platform data passed from
the boards (“arch/arm/mach-streamplug/streamplug_devel_board.c”).

/* serial nor flash specific board data */

static struct streamplug_smi_flash_info nor_flash_info[] =

{

 {

 .name = "smi0",

 .fast_mode = 1,

 .mem_base = FLASH_MEM_BASE_BANK0,

 .size = 16 * 1024 * 1024,

 },

 {

 .name = "smi1",

 .fast_mode = 1,

 .mem_base = FLASH_MEM_BASE_BANK1,

 .size = 16 * 1024 * 1024,

 },

 {

 .name = "smi2",

 .fast_mode = 1,

 .mem_base = FLASH_MEM_BASE_BANK2,

 .size = 16 * 1024 * 1024,

 },

};

/* smi specific board data */

Table 24. SMI configurations

Configuration Description

CONFIG_MTD_STREAMPLUG_SMI Enable SMI controller drivers

CONFIG_MTD_CMDLINE_PARTS
Enable dynamic partitioning based upon kernel command

line arguments

DocID028276 Rev 1 125/220

UM1942 Memory technology devices (MTD)

220

static struct streamplug_smi_plat_data smi_plat_data =

{

 .clk_rate = 40000000,/* used only in native configuration */

 .num_flashes = ARRAY_SIZE(nor_flash_info),

 .board_flash_info = nor_flash_info,

};

void init smi_init_board_info(struct platform_device *pdev)

{

 smi_set_plat_data(pdev, &smi_plat_data);

}

The above snippet asks the SMI controller driver to configure its clock to 25 MHz to access
the serial NOR Flash with partition info embedded in the cmdline.

The timing values apply to Linux native configuration only because in the full configuration
the timing setup will be performed by RTOS.

A new NOR device can be added by replacing or extending the “board_flash_info” array
supported by the corresponding “num_flashes”.

NOR Flash support

Serial NOR Flash devices accept a different set of commands over the serial interface for
read, write and erase. This is enumerated through a structure in
“drivers/mtd/devices/streamplug_smi.c”:

#define FLASH_ID(n, es, id, psize, ssize, size)\

{ \

 .name = n,\

 .erase_cmd = es,\

 .device_id = id,\

 .pagesize = psize,\

 .sectorsize = ssize, \

 .size_in_bytes = size\

}

static struct flash_device flash_devices[] = {

/* name - erase cmd - capacity.memorytype.manufacter - psize - ssize - size
*/

 FLASH_ID("winbond w25q128", 0xd8, 0x001840EF, 0x100, 0x10000,
0x1000000),

 FLASH_ID("winbond w25q64", 0xd8, 0x001740EF, 0x100, 0x10000,
0x800000),

 FLASH_ID("st m25p16", 0xd8, 0x00152020, 0x100, 0x10000, 0x200000),

 FLASH_ID("st m25p32", 0xd8, 0x00162020, 0x100, 0x10000, 0x400000),

 FLASH_ID("st m25p64", 0xd8, 0x00172020, 0x100, 0x10000, 0x800000),

 FLASH_ID("st m25p128", 0xd8, 0x00182020, 0x100, 0x40000,
0x1000000),

 FLASH_ID("st m25p05", 0xd8, 0x00102020, 0x80 , 0x8000 , 0x10000),

 FLASH_ID("st m25p10", 0xd8, 0x00112020, 0x80 , 0x8000 , 0x20000),

Memory technology devices (MTD) UM1942

126/220 DocID028276 Rev 1

 FLASH_ID("st m25p20", 0xd8, 0x00122020, 0x100, 0x10000, 0x40000),

 FLASH_ID("st m25p40", 0xd8, 0x00132020, 0x100, 0x10000, 0x80000),

 FLASH_ID("st m25p80", 0xd8, 0x00142020, 0x100, 0x10000, 0x100000),

 FLASH_ID("st m45pe10", 0xd8, 0x00114020, 0x100, 0x10000, 0x20000),

 FLASH_ID("st m45pe20", 0xd8, 0x00124020, 0x100, 0x10000, 0x40000),

 FLASH_ID("st m45pe40", 0xd8, 0x00134020, 0x100, 0x10000, 0x80000),

 FLASH_ID("st m45pe80", 0xd8, 0x00144020, 0x100, 0x10000, 0x100000),

 FLASH_ID("sp s25fl004", 0xd8, 0x00120201, 0x100, 0x10000, 0x80000),

 FLASH_ID("sp s25fl008", 0xd8, 0x00130201, 0x100, 0x10000,
0x100000),

 FLASH_ID("sp s25fl016", 0xd8, 0x00140201, 0x100, 0x10000,
0x200000),

 FLASH_ID("sp s25fl032", 0xd8, 0x00150201, 0x100, 0x10000,
0x400000),

 FLASH_ID("sp s25fl064", 0xd8, 0x00160201, 0x100, 0x10000,
0x800000),

 FLASH_ID("atmel 25f512", 0x52, 0x0065001F, 0x80 , 0x8000 ,
0x10000),

 FLASH_ID("atmel 25f1024" , 0x52, 0x0060001F, 0x100, 0x8000 ,
0x20000),

 FLASH_ID("atmel 25f2048" , 0x52, 0x0063001F, 0x100, 0x10000,
0x40000),

 FLASH_ID("atmel 25f4096" , 0x52, 0x0064001F, 0x100, 0x10000,
0x80000),

 FLASH_ID("atmel 25fs040" , 0xd7, 0x0004661F, 0x100, 0x10000,
0x80000),

 FLASH_ID("mac 25l512", 0xd8, 0x001020C2, 0x010, 0x10000, 0x10000),

 FLASH_ID("mac 25l1005", 0xd8, 0x001120C2, 0x010, 0x10000, 0x20000),

 FLASH_ID("mac 25l2005", 0xd8, 0x001220C2, 0x010, 0x10000, 0x40000),

 FLASH_ID("mac 25l4005", 0xd8, 0x001320C2, 0x010, 0x10000, 0x80000),

 FLASH_ID("mac 25l4005a", 0xd8, 0x001320C2, 0x010, 0x10000,
0x80000),

 FLASH_ID("mac 25l8005", 0xd8, 0x001420C2, 0x010, 0x10000,
0x100000),

 FLASH_ID("mac 25l1605", 0xd8, 0x001520C2, 0x100, 0x10000,
0x200000),

 FLASH_ID("mac 25l1605a", 0xd8, 0x001520C2, 0x010, 0x10000,
0x200000),

 FLASH_ID("mac 25l3205", 0xd8, 0x001620C2, 0x100, 0x10000,
0x400000),

 FLASH_ID("mac 25l3205a", 0xd8, 0x001620C2, 0x100, 0x10000,
0x400000),

 FLASH_ID("mac 25l6405", 0xd8, 0x001720C2, 0x100, 0x10000,
0x800000),

};

DocID028276 Rev 1 127/220

UM1942 Accelerators

220

6 Accelerators

The STreamPlug includes some hardware accelerators to speedup the complex algorithm
elaboration and data management. In particular there are:

 JPEG encoder/decoder

 DMA engine

 Cryptographic coprocessor (C3).

6.1 JPEG encoder/decoder

This section describes the JPEG encoder/decoder driver.

6.1.1 JPEG encoder/decoder software overview

The JPEG controller driver supports both JPEG encoding and decoding with/without header
processing enabled. It acts as an interface between user level applications and the JPEG
codec. The JPEG driver provides a char device interface to the user application and can be
used from the user level only. The JPEG driver accepts (for encoding) and gives (for
decoding) data in the MCU format. The overall JPEG codec software system architecture is
shown in Figure 14.

Figure 14. JPEG software architecture

The JPEG driver exposes two device nodes to the user application: “jpegread” and
“jpegwrite”. Input data may be written to the “jpegwrite” node and output data may be read
from the “jpegread” node. Data may be written/read to or from the JPEG chunk by chunk.
This means that input and output data buffers do not need to be very large. Small buffers

User application

Linux Char device framework

User space

Kernel space

Hardware

JPEG controller driver

JPEG codec

DMAC
driver

DMAC
driver

JPEG controller

AM039721

Accelerators UM1942

128/220 DocID028276 Rev 1

can be used again and again to write/read data to or from the JPEG. The following sections
describe usage of the JPEG driver in detail. Note that the sections are in the sequence in
which the JPEG driver is required to be programmed.

6.1.2 JPEG encoder/decoder kernel source and configuration

Table 25 lists the Linux kernel options related to the JPEG device driver.

The STreamPlug JPEG device driver is composed by the following source code files:

 “drivers/char/designware_jpeg.c”

 “drivers/char/designware_jpeg.h”

 “arch/arm/plat-streamplug/jpeg.c”

6.1.3 JPEG encoder/decoder platform configuration

Configuration of the device/driver through platform data or inherently in the driver itself.

6.1.4 JPEG encoder/decoder usage

JPEG encoder/decoder kernel space

To access the JPEG driver specific data types in user applications, include
“<linux/spr_jpeg_syn_usr.h>”. The JPEG device is allocated the major number dynamically.
To obtain the major number of the JPEG device, run the following command after board
boot-up:

$ cat /proc/devices

Character devices:

 1 mem

 4 /dev/vc/0

 4 tty

 5 /dev/tty

 5 /dev/console

 5 /dev/ptmx

 7 vcs

 9 st

 10 misc

 13 input

 21 sg

 29 fb

 81 video4linux

Table 25. JPEG driver configuration options

Configuration option Comment

CONFIG_DESIGNWARE_JPEG
This option enables the STreamPlug JPEG

driver.

CONFIG_DW_DMAC
This option must be selected for JPEG

operations. This will enable the DMA driver.

DocID028276 Rev 1 129/220

UM1942 Accelerators

220

 89 i2c

 90 mtd

116 alsa

128 ptm

136 pts

153 spi

161 ircomm

162 raw

180 usb

189 usb_device

204 ttyAMA

247 ubi0

248 bufV

249 ttyVS

250 ttyV

251 imageval

252 vlog

253 jpeg-designware

254 rtc

Block devices:

 1 ramdisk

259 blkext

 8 sd

 11 sr

 31 mtdblock

 65 sd

 66 sd

 67 sd

 68 sd

 69 sd

 70 sd

 71 sd

128 sd

129 sd

130 sd

131 sd

132 sd

133 sd

134 sd

135 sd

254 vblock

Accelerators UM1942

130/220 DocID028276 Rev 1

After obtaining the major number of the JPEG device, create JPEG nodes using the
following commands:

$ mknod /dev/jpegread c major 0

$ mknod /dev/jpegwrite c major 1

In this example, the “major” is the major number allocated to the JPEG.

These user level nodes are used for any further interaction with the JPEG driver. The
following steps illustrate how to do encoding/decoding with the JPEG.

Open JPEG nodes

After creating JPEG read and write nodes, the application should open them. Use the
following system call to open JPEG nodes:

rfd = open("/dev/jpegread", O_RDWR | O_SYNC);

wfd = open("/dev/jpegwrite", O_RDWR | O_SYNC);

where:

 “O_RDWR” access permission is used to get read/write permissions.

 “O_SYNC” access permission is used for synchronous I/O. Any writes on the resulting
file descriptor will block the calling process until the data has been physically written to
the underlying hardware. mmap function used later will give uncached memory if this
flag is used, otherwise data consistency issues will occur.

 “rfd” and “wfd” are read and write file descriptors used to further communicate with
JPEG nodes.

JPEG nodes can be opened by only one application at a time, thus they cannot be shared.
On success, positive file descriptors are returned, otherwise on error, -1 is returned and
errno is set appropriately. These file descriptors can be used for any further communication
with the JPEG device.

Set source image size

The JPEG driver must be told in advance the size of the input data (required by hardware).
Use the following system call to set the input data size:

ioctl(wfd, JPEGIOC_SET_SRC_IMG_SIZE, size);

where:

 “wfd” is the file descriptor of the jpegwrite node

 “JPEGIOC_SET_SRC_IMG_SIZE” is the ioctl command for setting input data size

 “size” is the size of the source image in bytes

Upon success, zero is returned, otherwise on error, -1 is returned and errno is set
appropriately. After completion of processing, if the user needs to encode/decode another
image, the user doesn't have to close JPEG nodes, de-allocate the buffer memory and open
the nodes again. The user can simply call this function again with the size of new input data.
This resets the complete JPEG system (software and hardware).

DocID028276 Rev 1 131/220

UM1942 Accelerators

220

Set JPEG information

The JPEG can perform four types of operations. They are:

 Encoding with header processing (EWH): the output JPEG image will have a header as
a part of the image.

 Encoding without header processing (EWOH): the output JPEG image will not have
a header as a part of the image.

 Decoding with header processing (DWH): the input JPEG image will have a header as
a part of the image.

 Decoding without header processing (DWOH): the input JPEG image will not have
a header as a part of the image.

The JPEG header and compression table information is passed to the JPEG driver in all
above cases, except DWH. In the DWH the JPEG codec extracts a header and table
information from the input JPEG image. Before proceeding with encoding/decoding, provide
header and table information to the JPEG driver (not required for DWH). Use the following
system call to set JPEG info for the EWH and EWOH:

ioctl(wfd, JPEGIOC_SET_ENC_INFO, &enc_info);

where:

 “wfd” is the file descriptor of the jpegwrite node.

 “JPEGIOC_SET_ENC_INFO” is the ioctl command for setting JPEG encoding
information.

 “enc_info” is the structure containing jpeg encoding information.

The “enc_info” structure is described below.

struct jpeg_enc_info {

 struct jpeg_hdr hdr;/* jpeg image header */

 int hdr_enable; /* header processing enable/disable */

 char qnt_mem[QNT_MEM_SIZE]; /* quantization memory */

 char dht_mem[DHT_MEM_SIZE]; /* DHT memory */

 char henc_mem[HENC_MEM_SIZE]; /* Huff enc memory */

};

The “jpeg_hdr” structure is described below.

struct jpeg_hdr {

 u32 num_clr_cmp; /* number of color components minus 1. */

 u32 clr_spc_type; /* number of quantization tables in the output
stream. */

 u32 num_cmp_for_scan_hdr; /* number of components for scan header
marker segment

 minus 1.*/

 u32 rst_mark_en;/* restart marker enable/disable */

 u32 xsize; /* number of pixels per line */

 u32 ysize; /* number of lines. */

 u32 mcu_num; /* this value defines the number of minimum coded
units to be coded,

 minus 1 */

 u32 mcu_num_in_rst; /* number of mcu's between two restart markers
minus 1.*/

Accelerators UM1942

132/220 DocID028276 Rev 1

 struct mcu_composition mcu_comp[MAX_MCU_COMP]; /* represents MCU
composition */

};

The “mcu_composition” structure is described below.

struct mcu_composition {

 u32 hdc; / *hdc bit selects the Huffman table for the encoding of
the DC

 * coefficient in the data units belonging to the color
component */

 u32 hac; /* hac bit selects the Huffman table for the encoding of
the AC

 * coefficients in the data units belonging to the color
component */

 u32 qt; /* QT indicates the quantization table to be used for the
color

 *component */

 u32 nblock; /* nblock value is the number of data units (8 x 8
blocks of data) of

 * the color component contained in the MCU */

 u32 h; /* Horizontal Sampling factor for component */

 u32 v; /* Vertical Sampling factor for component */

};

Use the following system call to set JPEG info for DWOH:

ioctl(wfd, JPEGIOC_SET_DEC_INFO, &dec_info);

where:

 “wfd” is the file descriptor of the jpegwrite node.

 “JPEGIOC_SET_DEC_INFO” is the ioctl command for setting JPEG decoding
information.

 “dec_info” is the structure containing jpeg decoding information.

The “dec_info” structure is described below.

struct jpeg_dec_info {

 struct jpeg_hdr hdr; /* jpeg image header */

 int hdr_enable;/* header processing enable/disable */

 char qnt_mem[QNT_MEM_SIZE];/* quantization memory */

 char hmin_mem[HMIN_MEM_SIZE];/* Huff min memory */

 char hbase_mem[HBASE_MEM_SIZE]; /* Huff base memory */

 char hsymb_mem[HSYMB_MEM_SIZE]; /* Huff symb memory */

};

Upon success, a zero is returned, otherwise on error, -1 is returned and errno is set
appropriately. If this ioctl is not called before writing/reading data to/from the JPEG, then
DWH (decoding with header processing) is performed by default.

DocID028276 Rev 1 133/220

UM1942 Accelerators

220

Mapping memory for read and write

The JPEG driver needs to allocate buffers for storing the input and output data. To speed up
the encoding/decoding process, the driver uses the “mmap()” Linux system call. This
system call allocates physically contiguous memory for the JPEG driver and returns the
virtual address of this memory to the user application. The user can then read and write to
the virtual addresses and the same data is reflected in the driver buffers. This saves
unnecessary data copy time between the kernel and user level. In order to further increase
the performance of the encoding/decoding process, two buffers are used both for read and
write operations. By having two buffers for read and write, we are actually parallelizing
JPEG processing. By the time JPEG hardware reads/writes data from/to read/write buffer
software has written/read data to/from an other buffer. Use the following system call to the
map physical memory in virtual space:

void * mmap(void *start, size_t length, int prot , int flags, int fd,
off_t offset);

where:

 “fd” is the file descriptor of the jpeg read/jpeg write node.

 “length” is the total size of buffers (write or read) to allocate. The size should be multiple
of the page size, i.e.: 4096 bytes. The maximum size that can be allocated or mapped
at once is 4 Mbytes, this makes the size of each buffer (write or read) 2 Mbytes. A
single call to “mmap” for the “jpegread/jpegwrite” node will allocate “length” amount of
the memory and will return its base address. The user application should use this
memory as two buffers of the same size.

Upon success, “mmap” returns a pointer to the mapped area. On error, the value
“MAP_FAILED” [that is, (void *)], -1 is returned, and errno is set appropriately. The “mmap”
function asks to map length bytes starting at offset “offset” from the file specified by the file
descriptor “fd” into the memory, preferably at the address “start”. This “start” address is
a hint only, and is usually specified as 0. The following parameters can be used to call this
function for “rfd” and “wfd”.

mmap(0, size, PROT_READ | PROT_WRITE, MAP_SHARED, file_desc, 0)

After one codec operation (encoding/decoding) has been completed, additional
encode/decode operations may be performed without closing nodes of jpegread/jpegwrite
or having to allocate/map the memory again. However, if the user needs to map the memory
again for a different size, any previously mapped memory must first be unmapped.

Write source JPEG data

After mapping the memory for the write buffer, input data may be written to it (data length
less than equal to the size of one write buffer). This can be done by writing or copying data
directly to the mapped virtual memory addresses of write buffers.

Accelerators UM1942

134/220 DocID028276 Rev 1

Start encoding or decoding

Once input data is written to the write buffer, encoding/decoding can be started/resumed.
Use the following system call to start and resume JPEG encoding/decoding with new input
data:

ioctl(wfd, JPEGIOC_START, size);

where:

 “wfd” is the file descriptor of the jpegwrite node

 “JPEGIOC_START” is the command to start/resume jpeg encoding/decoding

 “size” is the amount of data written on the jpegwrite node, the memory mapped for
each jpeg write buffer.

This is a blocking system call which unblocks or returns only when encoding/decoding with
data supplied from the current write buffer is started or an error has occurred. On success,
zero is returned otherwise, -1 is returned on error and errno is set appropriately. For
example, if the total size of the input data is 15 Kbytes, and the size of each write buffer is
4 Kbytes, then the following steps are used to pass data to the JPEG:

1. Set the current write buffer to “write_buffer0”

2. Write 4 Kbytes of data into the current write buffer

3. Call “JPEGIOC_START ioctl” with the size equal to 4 Kbytes

4. If the current write buffer is buffer 0, toggle the write buffer to be buffer1. If it's set it to
the buffer1, toggle it to the buffer0.

5. Follow steps 2., 3. and 4. two more times with a size of 4 Kbytes and one time with
a size of 3 Kbytes.

Get encoded/decoded data

Once encoding/decoding is started, the output data must be copied from the read buffer.
Use the following system call used to get the output data:

ioctl(rfd, JPEGIOC_GET_OUT_DATA_SIZE, &size);

where:

 “rfd” is the read node file descriptor.

 “JPEGIOC_GET_OUT_DATA_SIZE” is the command to get output data.

 “size” is the variable which will store the size of output data in bytes. This must always
be equal to the size of the individual read buffer. If it is less than the size of the
individual read buffer, end of encoding/decoding is indicated.

DocID028276 Rev 1 135/220

UM1942 Accelerators

220

This is a blocking system call which unblocks or returns only when the output data size less
than equal to the size of the individual read buffer is written to the current read buffer after
encoding/decoding. On success, zero is returned otherwise, -1 is returned on error and
errno is set appropriately. For example: the total size of output data is 15 Kbytes, the size of
each write buffer is 4 Kbytes, then the user needs to do following steps to read data from the
JPEG:

1. Set the current read buffer to the “read_buffer0”

2. Call “JPEGIOC_GET_OUT_DATA_SIZE ioctl”

3. Check the value of the parameter size if it is less than 4 kBytes/Kbits, wait until the end
encoding/decoding is indicated

4. Read data from the current read buffer

5. If the current read buffer is the buffer0, toggle it the buffer1. If the read buffer is the
buffer1, toggle it to the buffer0.

6. Follow steps 2., 3., 4., and 5. until the time step 3. doesn't indicate the end of
encoding/decoding.

Writing input data to the write buffer and reading output data from the read buffer have to be
done simultaneously. It is recommended to use different threads/processes for reading and
writing. This will speed up the encoding/decoding process.

Get JPEG information

Once encoding/decoding is finished the user can read JPEG information (JPEG header
information and compression tables). Use the following system call to get JPEG information:

ioctl(rfd, JPEGIOC_GET_INFO, &jpeg_info);

where:

 “rfd” is the read node file descriptor

 “JPEGIOC_GET_INFO” is the command to get jpeg information

 “jepg_info” is the instance of struct jpeg_info. After successful completion of this
system call, it will contain information of the JPEG header and compression tables.

On success, zero is returned otherwise, -1 is returned on error and errno is set
appropriately. Struct. “jpeg_hdr_info” is defined below:

struct jpeg_info {

 struct jpeg_hdr hdr;/* jpeg image header */

 char qnt_mem[QNT_MEM_SIZE]; /* quantization memory */

 char hmin_mem[HMIN_MEM_SIZE]; /* Huff min memory */

 char hbase_mem[HBASE_MEM_SIZE]; /* Huff base memory */

 char hsymb_mem[HSYMB_MEM_SIZE]; /* Huff symb memory */

 char dht_mem[DHT_MEM_SIZE]; /* DHT memory */

 char henc_mem[HENC_MEM_SIZE]; /* Huff enc memory */

};

The struct “jpeg_hdr” is already defined earlier in Section : Set JPEG information on
page 131.

This ioctl is mainly useful for DWH (decoding with header processing enabled).

Accelerators UM1942

136/220 DocID028276 Rev 1

munmap

Once the application is finished with JPEG processing, it should unmap the memory that
has been mapped for read and write buffers. Use the following system call to unmap
memory:

munmap(adrs, size);

where:

 “adrs” is the address of the mapped memory

 “size” is the size of the mapped memory

On success, a zero is returned otherwise, -1 is returned on error and errno is set
appropriately.

Close

After unmapping the memory, JPEG nodes must be closed. Use the following system call to
do this:

close(fd);

Close returns zero on success, or -1 if error occurred, errno is set appropriately. This
function must be called both for read and write nodes.

JPEG codec usage

JPEG read and write are not synchronized enough, for example, one chunk of input data
may produce output data varying in size. Due to this, write and read should be
simultaneously made to the JPEG driver, otherwise the JPEG codec may be wasting time
sitting idle. It is recommended to use two processes or threads to read and write data
simultaneously from the JPEG driver. This will increase speed of JPEG processing. The
following example is for encoding/decoding a JPEG image.

Below, input data is read by application from a file and is passed to the JPEG driver. After
that, it is processed by the JPEG codec based no processing type (encoding/decoding), and
output data is read by application again.

#include <sys/mman.h>

#include "include/linux/spr_jpeg_syn_usr.h"

struct jpeg_info jpeg_info;

volatile unsigned char *wbuf[2] = {NULL, NULL},

*rbuf[2] = {NULL, NULL};

unsigned int wsize = 4*4096, rsize = 4*4096;

unsigned int ssize = XXX;/* set size of input data here */

int rfd, wfd, cur_rbuf = 1, cur_wbuf = 1;

pid_t pid;

void jpegread()

{

 int size = 0, status;

 /* while encoding/decoding is not over */

 do

 {

 shuffle_buf(cur_rbuf);

DocID028276 Rev 1 137/220

UM1942 Accelerators

220

 if((status = ioctl(rfd, JPEGIOC_GET_OUT_DATA_SIZE, &size)) != 0)

 return -1;

 /* Add code here for manipulating decoded data present in
rbuf[cur_rbuf] */

 }while(size == rsize);

 /* get jpeg info after encoding/decoding is over */

 ioctl(rfd, JPEGIOC_GET_INFO, &jpeg_info);

 /* unmap buf */

 munmap((char *)rbuf[0], 2*rsize);

 close(rfd);

}

void jpegwrite()

{

 uint size = 0, count=0;

 int wfd, status;

 /* open jpeg nodes */

 wfd = open("/dev/jpegwrite", O_RDWR|O_SYNC);

 if (wfd == -1)

 return -1;

 /* set src image size */

 ioctl(wfd, JPEGIOC_SET_SRC_IMG_SIZE, ssize);

 /* set jpeg info for DWOH */

 /*

 struct jpeg_dec_info dec_info;

 ioctl(wfd, JPEGIOC_SET_DEC_INFO, dec_info);

 */

 /* set jpeg info for EWH, EWOH */

 /*

 struct jpeg_enc_info enc_info;

 ioctl(wfd, JPEGIOC_SET_ENC_INFO, enc_info);

 */

 wbuf[0] = (unsigned char *)mmap(0, 2*wsize, PROT_READ | PROT_WRITE,
MAP_SHARED, wfd, 0);

 wbuf[1] = wbuf[0] + wsize;

 while(count < ssize)

Accelerators UM1942

138/220 DocID028276 Rev 1

 {

 size = (ssize-count) < wsize?(ssize-count):wsize;

 count += size;

 shuffle_buf(cur_wbuf);

 /* Add code here to copy size amount of data on wbuf[cur_wbuf]
*/

 if((status = ioctl(wfd, JPEGIOC_START, rd)) != 0)

 return -1;

 }

 munmap((char *)wbuf[0], 2*wsize);

 close(wfd);

}

int main(void)

{

 /* open jpeg nodes */

 rfd = open("/dev/jpegread",O_RDWR|O_SYNC);

 if (rfd == -1)

 return -1;

 rbuf[0] = (unsigned char *)mmap(0, 2*rsize, PROT_READ | PROT_WRITE,
MAP_SHARED, rfd, 0);

 if (rbuf[0] == NULL)

 return -1;

 rbuf[1] = rbuf[0] + rsize;

 pid = fork();

 if (pid == 0)// child

 {

 jpegwrite();

 exit(0);

 }

 else if (pid > 0)// parent

 {

 jpegread();

 wait(0);

 }

 else// failed to fork

 {

 printf("Can't create child\n");

 exit(1);

 }

}

DocID028276 Rev 1 139/220

UM1942 Accelerators

220

JPEG encoder/decoder user space

Both encoding and decoding can be tested with ready-to-use demonstration applications
provided under the folder “/examples/jpeg”. Proof of the usage of the JPEG device driver
can be obtained printing the number of raised IRQs with the following command:

$ cat /proc/interrupts

 CPU0

 5: 1 vIRQ ehci_hcd:usb1, ohci_hcd:usb2

 16: 0 vIRQ dw_dmac

 17: 12367 vIRQ smi

 18: 0 vIRQ rtc-streamplug

 24: 0 vIRQ jpeg-designware

 26: 57 vIRQ uart-pl011

105: 4906 vIRQ microvisor timer

106: 0 vIRQ okl4-ksp-agent

Err: 0

Decoder

In order to test the JPEG decoder device driver, an application is provided below the
“/examples/jpeg” folder for decoding. Go into the “/example/jpeg” folder and run the
following application in the background:

$./decode <file in> <file out>

An input file example (“lena.jpg”) is on the same folder. The *.mcu output file has to be
passed as an input parameter to the Synopsys JDEM utility in order to generate the
decoded image.

Encoder

In order to test the JPEG encoder device driver, an application is provided below the
“/examples/jpeg” subfolder for encoding. Go into the “/example/jpeg” folder and run the
application such as:

$./encode <Q table> <Huffman table> <DHT table> <X size> <Y size>
<MCU format>

<restar marker distance> <file in> <file out>

For example:

$./encode qetable.dat htable.dat dhttable.dat 128 128 1 1 lena.mcu
out.jpeg

6.2 Direct memory access (DMA)

All STreamPlug MPUs are equipped with a general purpose DMA controllers which provide
several DMA channels that can be used to off load the CPU from some of the memory
copying tasks. This section describes the details of the DMAC driver.

Accelerators UM1942

140/220 DocID028276 Rev 1

6.2.1 DMA hardware overview

Direct memory access (DMA) allows certain subsystems within the STreamPlug MPU to
access the system memory for reading and/or writing independently of the CPU and to
transfer data avoiding, in this way, an heavy CPU overhead.

The STreamPlug MPU uses the Synopsys designware DMA controller. It is connected to the
AHB bus. Synopsys designware DMAC's main features are:

 AMBA 2.0-compliant

 DMA transfers

– Peripheral-to-peripheral

– Memory-to-peripheral

– Peripheral-to-memory

– Memory-to-memory

 Channels

– Up to eight channels, one per source and destination pair

– Unidirectional channels - data transfers in one direction only

 Interrupt generation on DMA transfer (multiblock) completion, block transfer
completion, single and burst transaction completion.

6.2.2 DMA software overview

The Linux DMA support has been organized in two different layers in order to provide
abstraction to the user which can hide the internal implementation of DMA controller drivers.

The Linux DMA engine framework defines clear APIs and channel abstraction for the user to
access underlying DMA hardware and it expects the underlying DMA controller driver to
provide necessary callbacks to support this.

The overall DMA software system architecture is represented in Figure 15.

DocID028276 Rev 1 141/220

UM1942 Accelerators

220

Figure 15. DMA framework architecture

The DMA framework present in Linux provides a simple interface to client drivers who wish
to use the DMA. Clients just request DMA channels, transfer data on allocated DMA
channels and finally free allocated DMA channels.

To increase the performance of the DMA driver, cache/memory consistency related issues
are handled by client drivers for non-slave transfer, i.e.: transfers involving peripherals. They
can synchronize data between the cache and DDR if the source or destination memory is
cached. If memories are uncached there is no need for synchronization.

Device driver

Linux DMA engine framework
Kernel space

Hardware

DMA controller driver

DMA-capable

peripheral devices

DMA

controller

AM039722

Accelerators UM1942

142/220 DocID028276 Rev 1

DMA engine API

The entire DMA engine abstraction is built around the concept of DMA channels which is
abstracted as:

/**

* struct dma_chan - devices supply DMA channels, clients use them

* @device: ptr to the dma device who supplies this channel, always !%NULL

* @cookie: last cookie value returned to client

* @chan_id: channel ID for sysfs

* @dev: class device for sysfs

* @device_node: used to add this to the device chan list

* @local: per-cpu pointer to a struct dma_chan_percpu

* @client-count: how many clients are using this channel

* @table_count: number of appearances in the mem-to-mem allocation table

* @private: private data for certain client-channel associations

*/

struct dma_chan {

 struct dma_device *device;

 dma_cookie_t cookie;

 /* sysfs */

 int chan_id;

 struct dma_chan_dev *dev;

 struct list_head device_node;

 struct dma_chan_percpu percpu *local;

 int client_count;

 int table_count;

 void *private;

};

The following example tries to list some of the common and the most used DMA engine
framework APIs:

struct dma_chan *dma_request_channel(dma_cap_mask_t mask, dma_filter_fn
filter_fn, void *filter)

In order to do DMA transfers, the user must request a DMA channel. To request a channel
“dma_request_channel()”, the API is used. A channel allocated via this interface is reserved
to the caller, until the “dma_release_channel()” is called.

The “dma_filter_fn” parameter is defined as “typedef” bool (*dma_filter_fn)(struct dma_chan
*chan, void *filter_param).

The “filter_fn” parameter is optional, but highly recommended for slave and cyclic channels
as they typically need to obtain a specific DMA channel. When the optional “filter_fn”
parameter is NULL, the “dma_request_channel()” simply returns the first channel that
satisfies the capability mask. Otherwise, the “filter_fn” routine will be called once for each
free channel which has a capability in the mask and return true when the desired DMA
channel is found.

DocID028276 Rev 1 143/220

UM1942 Accelerators

220

The following is only required for slave (involving peripherals) transfers.

int dmaengine_slave_config(struct dma_chan *chan, struct
dma_slave_config *config)

Most of the generic information which a slave DMA can use is in “struct dma_slave_config”.
This allows the clients to specify the DMA direction, DMA addresses, bus widths, DMA burst
lengths, etc. for the peripheral. If some DMA controllers have more parameters to be sent
then they should try to include “struct dma_slave_config” in their controller specific structure.
That gives flexibility to the client to pass more parameters, if required. “dma_slave_config” is
defined as:

struct dma_slave_config {

 enum dma_data_direction direction;

 dma_addr_t src_addr;

 dma_addr_t dst_addr;

 enum dma_slave_buswidth src_addr_width;

 enum dma_slave_buswidth dst_addr_width;

 u32 src_maxburst;

 u32 dst_maxburst;

 bool device_fc;

};

The “dma_async_tx_descriptor” API can be used for DMA from the source to the destination
memory and is used for non-slave usage.

struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(

 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,

 size_t len, unsigned long flags);

Similarly the “dma_async_tx_descriptor” API sets destination memory with a specific value.

struct dma_async_tx_descriptor *(*device_prep_dma_memset)(

 struct dma_chan *chan, dma_addr_t dest, int value, size_t len,

 unsigned long flags)

struct dma_async_tx_descriptor *(*device_prep_slave_sg)(

 struct dma_chan *chan, struct scatterlist *sgl,

 unsigned int sg_len, enum dma_data_direction direction,

 unsigned long flags);

For “slave_sg” usage one can prepare the DMA descriptor for a transfer through this API.
The DMA on calling of this API prepares a list of scatter gather buffers for transfer from/to
a peripheral.

Accelerators UM1942

144/220 DocID028276 Rev 1

6.2.3 DMA kernel source and configuration

The DMA controller device driver is composed by the Synopsys DMAC files:
“drivers/dma/dw_dmac.c”, “drivers/dma/dw_dmac_regs.h” and “include/linux/dw_dmac.h”.

Table 26 lists the kernel configuration options related to STreamPlug DMA support.

6.2.4 DMA platform configuration

The optional platform data passed from machines for DMAC is as follows:

/* dmac device registration */

static struct dw_dma_platform_data dmac_platform_data = {

 .nr_channels = 8,

};

static struct resource dmac_resources[] = {

{

 .start = STREAMPLUG1X_ICM3_DMA_BASE,

 .end = STREAMPLUG1X_ICM3_DMA_BASE + SZ_4K - 1,

 .flags = IORESOURCE_MEM,

 }, {

 .start = STREAMPLUG1X_IRQ_BAS_SUBS_DMAC,

 .flags = IORESOURCE_IRQ,

 },

};

struct platform_device streamplug1x_dmac_device = {

 .name = "dw_dmac",

 .id = -1,

 .dev = {

 .coherent_dma_mask = ~0,

 .platform_data = &dmac_platform_data,

 },

 .num_resources = ARRAY_SIZE(dmac_resources),

 .resource = dmac_resources,

};

Table 26. DMA configurations

Configuration Description

CONFIG_DMADEVICES Enable DMA ENGINE devices support

CONFIG_DW_DMAC Enable SYNOPSYS designware DMA controller driver

DocID028276 Rev 1 145/220

UM1942 Accelerators

220

6.2.5 DMA usage

Below is a guide to device driver developers on how to use the DMA API of the DMA engine.
The DMA usage consists of following steps:

1. Allocate a DMA slave channel

2. Set slave and controller specific parameters

3. Get a descriptor for transaction

4. Submit the transaction

5. Issue pending requests and wait for callback notification

Following are examples usage of the DMA engine for “memcpy”.

Common callback routine:

static void dmatest_callback(void *arg) {

 int *done = arg;

 *done = 1;

 printk(KERN_INFO "DMA xfer is complete");

}

Memcpy

void dma_memcpy() {

 dma_cap_mask_t mask;

 dma_cookie_t cookie;

 struct dma_chan *chan;

 struct dma_device *dmadev;

 struct dma_async_tx_descriptor *tx = NULL;

 u8 *sbuf = 0xc0000000, *dbuf = 0xc8000000;

 dma_addr_t dma_srcs, dma_dsts;

 int len = 0x1000, done = 0;

 enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT |

 DMA_COMPL_SKIP_DEST_UNMAP | DMA_COMPL_SRC_UNMAP_SINGLE;

 dma_cap_zero(mask);

 dma_cap_set(DMA_MEMCPY, mask); chan = dma_request_channel(mask,
NULL, NULL);

 dmadev = chan->device;

 dma_srcs = dma_map_single(dmadev->dev, sbuf, len, DMA_TO_DEVICE);

 dma_dsts = dma_map_single(dmadev->dev, dbuf, len, DMA_BIDIRECTIONAL);

 tx = dmaengine_prep_memcpy(chan, dma_dsts, dma_srcs, len, flags);

 if (!tx) {

 dma_unmap_single(dmadev->dev, dma_srcs, len, DMA_TO_DEVICE);

 dma_unmap_single(dmadev->dev, dma_dsts, len, DMA_BIDIRECTIONAL);

 }

Accelerators UM1942

146/220 DocID028276 Rev 1

 tx->callback = dmatest_callback;

 tx->callback_param = &done;

 cookie = tx->tx_submit(tx);

 if (dma_submit_error(cookie)) {

 printk(KERN_INFO "Error in dma tx_submit\n");

 return;

 }

 dma_async_issue_pending(chan);

 while (!done)

 msleep(10);

 dma_unmap_single(dmadev->dev, dma_dsts, len, DMA_BIDIRECTIONAL);

}

For the Synopsys DMA controller, this must be an instance of “struct dw_dma_slave”.

/**

* struct dw_dma_slave - Controller-specific information about a slave

*

* @dma_dev: required DMA controller device

* @tx_reg: physical address of data register used for

* memory-to-peripheral transfers

* @rx_reg: physical address of data register used for

* peripheral-to-memory transfers

* @reg_width: peripheral register width

* @cfg_hi: Platform-specific initializer for the CFG_HI register

* @cfg_lo: Platform-specific initializer for the CFG_LO register

* @src_master: src master for transfers on allocated channel.

* @dst_master: dest master for transfers on allocated channel.

* @src_msize: src burst size.

* @dst_msize: dest burst size.

* @fc: flow controller for DMA transfer

*/

DocID028276 Rev 1 147/220

UM1942 Accelerators

220

Struct dw_dma_slave {

 structdevice*dma_dev;

 dma_addr_ttx_reg;

 dma_addr_trx_reg;

 enum dw_dma_slave_widthreg_width;

 u32 cfg_hi;

 u32 cfg_lo;

 u8 src_master;

 u8 dst_master;

 u8src_msize;

 u8dst_msize;

 u8fc;

};

6.3 Channel controller coprocessor (C3)

The channel controller coprocessor (C3) is an hardware cryptographic coprocessor used to
accelerate data intensive applications where computationally expensive algorithms must
operate on medium to large memory buffers. Such applications can be found in the fields of
security (data encryption, integrity check, etc.) and networking.

The most important features of the C3 are:

 Supported many cryptographic algorithms (AES, DES, TripleDES, SHA-1, SHA-256,
MD5, etc.)

 Instruction driven by the DMA based programmable engine.

The C3 is a highly programmable DMA based hardware coprocessor that executes some
instructions flows (programs) written in the memory by the host processor. These programs
specify which operations must be performed and where to locate data buffers (input, output,
parameters) in the memory. After being setup the C3 is completely autonomous and can
perform an unlimited number of operations, until it hits an end of program instruction in
which case it can signal the end of processing by the means of an interrupt request (if
programmed to do so).

Accelerators UM1942

148/220 DocID028276 Rev 1

6.3.1 C3 software overview

The C3 device driver is composed by an API which allows to setup programs that the C3
processor can execute. The API is exposed through a set of Linux kernel symbols listed
hereafter:

EXPORT_SYMBOL(count_sg_total); EXPORT_SYMBOL(count_sg);
EXPORT_SYMBOL(c3_unmap_sg_chain); EXPORT_SYMBOL(c3_unmap_sg);
EXPORT_SYMBOL(c3_map_sg); EXPORT_SYMBOL(c3_AES_CBC_encrypt);
EXPORT_SYMBOL(c3_AES_CBC_decrypt); EXPORT_SYMBOL(c3_AES_CBC_encrypt_sg);
EXPORT_SYMBOL(c3_AES_CBC_decrypt_sg);

EXPORT_SYMBOL(c3_AES_CTR_encrypt); EXPORT_SYMBOL(c3_AES_CTR_decrypt);
EXPORT_SYMBOL(c3_AES_CTR_encrypt_sg); EXPORT_SYMBOL(c3_AES_CTR_decrypt_sg);
EXPORT_SYMBOL(c3_SHA1_init); EXPORT_SYMBOL(c3_SHA1_append);
EXPORT_SYMBOL(c3_SHA1_append_sg); EXPORT_SYMBOL(c3_SHA1_end);
EXPORT_SYMBOL(c3_SHA1); EXPORT_SYMBOL(c3_SHA1_sg);
EXPORT_SYMBOL(c3_SHA1_HMAC_init); EXPORT_SYMBOL(c3_SHA1_HMAC_append);
EXPORT_SYMBOL(c3_SHA1_HMAC_append_sg); EXPORT_SYMBOL(c3_SHA1_HMAC_end);
EXPORT_SYMBOL(c3_SHA1_HMAC); EXPORT_SYMBOL(c3_SHA1_HMAC_sg);

6.3.2 C3 kernel source and configuration

The C3 device driver is composed by the following source code files:

drivers/char/c3/c3_driver_interface.c

drivers/char/c3/c3_driver_core.c drivers/char/c3/c3_cryptoapi.c

drivers/char/c3/c3_autotest.c drivers/char/c3/c3_mpcm.c
drivers/char/c3/c3_char_dev_driver_instructions.c

drivers/char/c3/c3_streamplug.c

drivers/char/c3/c3_char_dev_driver.c

drivers/char/c3/c3_registers.c

drivers/char/c3/c3_driver.mod.c

drivers/char/c3/c3_cryptoapi.mod.c

drivers/char/c3/c3_irq.c

arch/arm/mach-streamplug/ipswrst_ctrl.c

arch/arm/mach-streamplug/include/mach/streamplug10.h

arch/arm/mach-streamplug/clock.c

which are compiled into the following Linux kernel modules:

drivers/char/c3/c3_cryptoapi.ko

drivers/char/c3/c3_driver.ko

DocID028276 Rev 1 149/220

UM1942 Accelerators

220

If the configuration listed in Table 27 is adopted:

Table 27. C3 Linux kernel configuration

Configuration Description

CONFIG_C3_DRIVER=m C3 is a crypto accelerator.

CONFIG_C3_DRIVER_STREAMPLUG1x=y C3 on STreamPlug1x.

CONFIG_AUTO_TEST=y
This setting enables default kernel level testing for different crypto

algorithms.

CONFIG_C3_CRYPTOAPI_INTEGRATION=m
Module for integration with Linux CryptoAPI (kernel version

2.6.37). Support for offloading asynchronous AES (CTR, CBC),
SHA-1, HMAC (SHA-1) operations to the C3 hardware.

CONFIG_CRYPTO=y This option provides the core Cryptographic API.

CONFIG_CRYPTO_ALGAPI=y This option provides the API for cryptographic algorithms.

CONFIG_CRYPTO_ALGAPI2=y N/A

CONFIG_CRYPTO_AEAD=m N/A

CONFIG_CRYPTO_AEAD2=y N/A

CONFIG_CRYPTO_BLKCIPHER=y N/A

CONFIG_CRYPTO_BLKCIPHER2=y N/A

CONFIG_CRYPTO_HASH=y N/A

CONFIG_CRYPTO_HASH2=y N/A

CONFIG_CRYPTO_RNG=y N/A

CONFIG_CRYPTO_RNG2=y N/A

CONFIG_CRYPTO_PCOMP=y N/A

CONFIG_CRYPTO_MANAGER=y
Create default cryptographic template instantiations such as CBC

(AES).

CONFIG_CRYPTO_MANAGER2=y N/A

CONFIG_CRYPTO_WORKQUEUE=y N/A

CONFIG_CRYPTO_AUTHENC=m
Authenc: a combined mode wrapper for IPSec. This is required for

IPSec.

CONFIG_CRYPTO_SEQIV=m
This IV generator generates an IV based on a sequence number
by XORing it with a salt. This algorithm is mainly useful for CTR.

CONFIG_CRYPTO_CBC=y
CBC: a Cipher-Block Chaining mode. This block cipher algorithm

is required for IPSec.

CONFIG_CRYPTO_CTR=m
CTR: a counter mode. This block cipher algorithm is required for

IPSec.

CONFIG_CRYPTO_HMAC=m
HMAC: Keyed-Hashing for Message Authentication (RFC2104).

This is required for IPSec.

CONFIG_CRYPTO_CRC32C=y
Castagnoli, et al.: cyclic redundancy check algorithm. Used by

iSCSI for header and data digests and by others. See
Castagnoli93. The module will be crc32c.

CONFIG_CRYPTO_MD5=y MD5 message digest algorithm (RFC1321).

Accelerators UM1942

150/220 DocID028276 Rev 1

6.3.3 C3 platform configuration

The C3 device driver defines the following platform configuration:

static struct device dev = {

 .init_name = "c3",

 .release = c3_release,

};

6.3.4 C3 usage

The C3 device driver module is tested only in kernel space using the following procedure.
The autotest loads up automatically when the “c3_driver.ko” module is loaded.

$ modprobe c3_driver

The test can be stopped by removing the module using the “rmmod” command.

$ rmmod c3_driver

The C3 autotest log captured from the UART kernel console is shown below.

[C3 INFO] - Crypto Channel Controller (c) ST Microelectronics

[C3 INFO] - Driver version = 2.0

[C3 INFO] - Built on Feb 29 2012 at 11:44:22 [C3 INFO] - C3 device
found (HID: ffff9000)

[C3 INFO] - SHA1 test [buffer size: 64] throughput : 2976 KBps [C3
INFO] - SHA1 test [buffer size: 128] throughput : 5898 KBps [C3 INFO]
- SHA1 test [buffer size: 256] throughput : 11583 KBps [C3 INFO] -
SHA1 test [buffer size: 512] throughput : 20897 KBps [C3 INFO] - SHA1
test [buffer size: 1024] throughput : 33573 KBps [C3 INFO] - SHA1 test

CONFIG_CRYPTO_AES=y

AES cipher algorithms (FIPS 197). AES uses the Rijndael
algorithm. The Rijndael appears to consistently be a very good

performer in both hardware and software across a wide range of
computing environments regardless of its use in feedback or non-
feedback modes. Its key setup time is excellent, and its key agility

is good. Rijndael's very low memory requirements make it very
well suited for restricted space environments, in which it also

demonstrates an excellent performance. Rijndael's operations are
among the easiest to defend against power and timing attacks.
The AES specifies three key sizes: 128, 192 and 256 bits. For

more information, see
http://csrc.nist.gov/groups/ST/toolkit/index.html

CONFIG_CRYPTO_CAST5=y
The CAST5 encryption algorithm (synonymous with CAST-128) is

described in RFC2144.

CONFIG_CRYPTO_DES=y
DES cipher algorithm (FIPS 46-2), and triple DES EDE

(FIPS 46-3).

CONFIG_CRYPTO_ANSI_CPRNG=y

This option enables the generic pseudo random number generator
for cryptographic modules. Uses the algorithm specified in ANSI

X9.31 A.2.4. Note that this option must be enabled if
CRYPTO_FIPS is selected.

Table 27. C3 Linux kernel configuration (continued)

Configuration Description

http://csrc.nist.gov/groups/ST/toolkit/index.html
http://csrc.nist.gov/groups/ST/toolkit/index.html

DocID028276 Rev 1 151/220

UM1942 Accelerators

220

[buffer size: 2048] throughput : 48188 KBps [C3 INFO] - SHA1 test
[buffer size: 4096] throughput : 61686 KBps [C3 INFO] - SHA1 test
[buffer size: 8192] throughput : 71608 KBps

[C3 INFO] - SHA1_HMAC test [buffer size: 64] throughput : 2782 KBps
[C3 INFO] - SHA1_HMAC test [buffer size: 128] throughput : 5541 KBps
[C3 INFO] - SHA1_HMAC test [buffer size: 256] throughput : 10240 KBps
[C3 INFO] - SHA1_HMAC test [buffer size: 512] throughput : 18285 KBps
[C3 INFO] - SHA1_HMAC test [buffer size: 1024] throughput : 30029
KBps [C3 INFO] - SHA1_HMAC test [buffer size: 2048] throughput : 44618
KBps [C3 INFO] - SHA1_HMAC test [buffer size: 4096] throughput : 58514
KBps [C3 INFO] - SHA1_HMAC test [buffer size: 8192] throughput : 69482
KBps [C3 INFO] - SHA512 test [buffer size: 64] throughput : 6037 KBps

[C3 INFO] - SHA512 test [buffer size: 128] throughput : 11962 KBps [C3
INFO] - SHA512 test [buffer size: 256] throughput : 23486 KBps [C3
INFO] - SHA512 test [buffer size: 512] throughput : 45309 KBps [C3
INFO] - SHA512 test [buffer size: 1024] throughput : 84628 KBps [C3
INFO] - SHA512 test [buffer size: 2048] throughput : 150588 KBps

[C3 INFO] - SHA512 test [buffer size: 4096] throughput : 245269 KBps
[C3 INFO] - SHA512 test [buffer size: 8192] throughput : 357729 KBps
[C3 INFO] - SHA512HMAC test [buffer size: 64] throughput : 5423 KBps
[C3 INFO] - SHA512HMAC test [buffer size: 128] throughput : 10756
KBps [C3 INFO] - SHA512HMAC test [buffer size: 256] throughput : 21157
KBps [C3 INFO] - SHA512HMAC test [buffersize: 512] throughput : 40634
KBps

[C3 INFO] - SHA512HMAC test [buffer size: 1024] throughput : 76992
KBps [C3 INFO] - SHA512HMAC test [buffer size: 2048] throughput :
138378 KBps [C3 INFO] - SHA512HMAC test [buffer size: 4096] throughput
: 228826 KBps [C3 INFO] - SHA512HMAC test [buffer size: 8192]
throughput : 339917 KBps [C3 INFO] - DES_CBC test [buffer size: 64]
throughput : 3422 KBps

[C3 INFO] - DES_CBC test [buffer size: 128] throughput : 5378 KBps
[C3 INFO] - DES_CBC test [buffer size: 256] throughput : 10622 KBps
[C3 INFO] - DES_CBC test [buffer size: 512] throughput : 20078 KBps
[C3 INFO] - DES_CBC test [buffer size: 1024] throughput : 33032 KBps
[C3 INFO] - DES_CBC test [buffer size: 2048] throughput : 48530 KBps
[C3 INFO] - DES_CBC test [buffer size: 4096] throughput : 63209 KBps
[C3 INFO] - DES_CBC test [buffer size: 8192] throughput : 74540 KBps
[C3 INFO] - 3DES_CBC test [buffer size: 64] throughput : 2844 KBps [C3
INFO] - 3DES_CBC test [buffer size: 128] throughput : 5663 KBps [C3
INFO] - 3DES_CBC test [buffer size: 256] throughput : 10000 KBps [C3
INFO] - 3DES_CBC test [buffer size: 512] throughput : 16357 KBps

[C3 INFO] - 3DES_CBC test [buffer size: 1024] throughput : 24150 KBps
[C3 INFO] - 3DES_CBC test [buffer size: 2048] throughput : 31556 KBps
[C3 INFO] - 3DES_CBC test [buffer size: 4096] throughput : 37372 KBps
[C3 INFO] - 3DES_CBC test [buffer size: 8192] throughput : 41145 KBps
[C3 INFO] - AES128_CBC test [buffer size: 64] throughput : 3595 KBps
[C3 INFO] - AES128_CBC test [buffer size: 128] throughput : 6124 KBps
[C3 INFO] - AES128_CBC test [buffer size: 256] throughput : 10406 KBps
[C3 INFO] - AES128_CBC test [buffer size: 512] throughput : 20398 KBps

[C3 INFO] - AES128_CBC test [buffer size: 1024] throughput : 34362
KBps [C3 INFO] - AES128_CBC test [buffer size: 2048] throughput : 51979
KBps [C3 INFO] - AES128_CBC test [buffer size: 4096] throughput : 70378
KBps [C3 INFO] - AES128_CBC test [buffer size: 8192] throughput : 85244
KBps [C3 INFO] - AES256_CBC test [buffer size: 64] throughput : 3422
KBps

Accelerators UM1942

152/220 DocID028276 Rev 1

[C3 INFO] - AES256_CBC test [buffer size: 128] throughput : 5400 KBps
[C3 INFO] - AES256_CBC test [buffer size: 256] throughput : 10534 KBps
[C3 INFO] - AES256_CBC test [buffer size: 512] throughput : 20480 KBps
[C3 INFO] - AES256_CBC test [buffer size: 1024] throughput : 34711
KBps [C3 INFO] - AES256_CBC test [buffer size: 2048] throughput : 53194
KBps [C3 INFO] - AES256_CBC test [buffer size: 4096] throughput : 72882
KBps [C3 INFO] - AES256_CBC test [buffer size: 8192] throughput : 89237
KBps [C3 INFO] - [CDD] Unregistering character device driver

The autotest allows to check the performance of the following algorithms:

 DES/3DES (CBC)

 AES (CBC, CTR)

 Hash (SHA1/SHA512 w/HMAC).

DocID028276 Rev 1 153/220

UM1942 Frame buffer drivers

220

7 Frame buffer drivers

The Linux frame buffer (“fbdev”) is a graphic hardware independent abstraction layer to
show graphics on a computer monitor. The word frame buffer means a part of the video
memory containing a current video frame, and the Linux frame buffer means “access
method to the frame buffer under the Linux kernel”, without relying on system specific
libraries such as “SVGALib” or another user space software.

Color liquid crystal display (CLCD)

The CLCD controller provides all the necessary control signals to interface directly to
a variety of LCD panels. This section describes the driver for the CLCD controller available
on the STreamPlug.

CLCD software overview

The CLCD device driver sits on the top of the CLCD controller and provides all necessary
functions for a graphic application via the standard Linux frame buffer interface.

CLCD kernel source and configuration

Following is the detail corresponding to the layout of the driver and kernel configuration:

 The digital blocks CLCD driver is present in “drivers/video/amba-clcd.c”

 The platform data configuration is present in “arch/arm/plat-streamplug/clcd.c”.

The kernel configuration is listed in Table 28.

Table 28. CLCD configurations

Configuration Description

CONFIG_FB_ARMCLCD
Enable the ARM® PrimeCell® PL110 color LCD

controller

CONFIG_FB_ARMCLCD_SHARP_LQ043T1DG01

Enable the LCD device controller for the
SHARP LQ043T1DG01 model. This is

implementation of the “Sharp LQ043T1DG01,
a 4.2" color TFT panel. The native resolution is

480 x 272.

Frame buffer drivers UM1942

154/220 DocID028276 Rev 1

CLCD clock source configuration

There are two clock domains in the LCD controller core:

 Bus clock (BCLK) domain:

– Master and slave interfaces

– Control and status registers

– DMA controller

– Write side of the palette two-port RAM

– Write side of the input FIFO

– Interrupt controller

 Pixel clock (PCLK) domain:

– Read side of the Input FIFO

– Read side of the palette two-port RAM

– Pixel unpack

– Timing and control unit

– Output formatter

Within the pixel clock domain, there are two versions of PCLK:

 The internal pixel clock (PCLK), which serves as the on-chip clock for the DB9000 pixel
pipeline logic

 The external pixel clock (LCD_PCLK), which serves as the off-chip clock to the LCD
panel pixel clock input.

The controller's clock generator can derive PCLK and LCD_PCLK from 2 possible sources:

 The input bus clock (BCLK)

 The input pixel clock (PCLK_IN)

The “PCLK_IN” can be selected from different sources. The CLCD synthesizer is being one
of them.

In the controller, the clock generator outputs are determined by the pixel clock timing
register (PCTR) programming parameters.

In the STreamPlug, “BCLK” is the AHB clock (166 MHz) and “PCLK_IN” can be configured
further from several sources in the SoC but outside the controller. The clock selection
criteria in the driver is based on following strategy:

First determine if the required pixel CLK for panel can be generated by “BCLK”:

LCD_PCLK = BCLK /(2 + PCD)

If the PCD is not configurable, then select “PCLK_IN” as the source and call “clk_set_rate”
to set the desired pixel clock for the panel.

DocID028276 Rev 1 155/220

UM1942 Frame buffer drivers

220

CLCD allocate frame buffer memory

For a max. resolution of 800 x 400 pixels, the panel resolution requires 1.5 Mbytes of the
contiguous memory for a frame buffer. During the setup, the routine
“dma_alloc_writecombine” is used to allocate the memory for the frame buffer as shown
below.

static int clcd_setup(struct clcd_fb *fb)

{

 dma_addr_t dma;

 struct clk *clk;

 int ret = 0;

 clk = clk_get(&fb->dev->dev, "hclk");

 if (IS_ERR(clk)) {

 dev_err(&fb->dev->dev, "failed to get clcd clock\n");

 ret = PTR_ERR(clk);

 goto out;

 }

 clk_enable(clk);

/* Detect which LCD panel is connected */

#ifdef CONFIG_FB_ARMCLCD_SHARP_LQ043T1DG01

 fb->panel = &sharp_LQ043T1DG01_in;

#endif

#ifdef CONFIG_FB_ARMCLCD_SAMSUNG_LMS700

 fb->panel = &samsung_LMS700_in;

#endif

 fb->fb.screen_base = dma_alloc_writecombine(&fb->dev->dev, FRAMESIZE,

 &dma, GFP_KERNEL);

 if (!fb->fb.screen_base) {

 printk(KERN_ERR "CLCD: unable to map framebuffer\n");

 return -ENOMEM;

 }

 fb->fb.fix.smem_start = dma;

 fb->fb.fix.smem_len = FRAMESIZE;

 out:

 return ret;

}

Frame buffer drivers UM1942

156/220 DocID028276 Rev 1

CLCD platform data

Default configuration of the digital blocks CLCD controller depends on the platform data
passed from the boards through functions defined in “arch/arm/plat-streamplug/clcd.c”. The
CLCD main structure is shown below.

static struct clcd_panel sharp_LQ043T1DG01_in = {

 .mode = {

 .name = "Sharp LQ043T1DG01",

 .refresh = 0,

 .xres = 480,

 .yres = 272,

 .pixclock = KHZ2PICOS(9000),

 .left_margin = 2,

 .right_margin = 2,

 .upper_margin = 2,

 .lower_margin = 2,

 .hsync_len = 41,

 .vsync_len = 11,

 .sync = 0, //FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,

 .vmode = FB_VMODE_NONINTERLACED,

 },

 .width = -1,

 .height = -1,

 .tim2 = TIM2_IOE | TIM2_CLKSEL | TIM2_BCD,

 .cntl = CNTL_LCDTFT | CNTL_BGR,

 .bpp = 32,

 .power_sleep = 0,

};

CLCD usage

In order to test the CLCD display the following utilities are available:

 “fbv” - a frame buffer image viewer (provided as a buildroot package) that supports
multiple image formats

 “clcd”, found in the folder “/example/jpeg”, that displays the result of hardware JPEG
decoding on the CLCD.

 “gpm” - a tool to support mouse interactivity in Linux. GPM utilities are provided within
mountable auxiliary FS.

To enable the CLCD support at run-time it is necessary to configure the Linux kernel
command line using the options listed in Table 4 on page 22. To run “fbv” use the following
command line:

$ fbv -k -f "image to display"

The two options adapt the image to the screen size (-k) and frame buffer color depth (-f),
only in case LCD bpp is less than the image bpp.

To run the CLCD use the following command line:

$./clcd "image to display"

DocID028276 Rev 1 157/220

UM1942 Frame buffer drivers

220

The program decodes the JPEG directly to the LCD frame buffer.

Some frame buffer options can be configured directly from the shell by accessing controls
export through “sysfs”. Some useful options are:

 Control blinking cursor:

$ echo 0 > /sys/class/graphics/fbcon/cursor_blink # to disable

$ echo 1 > /sys/class/graphics/fbcon/cursor_blink # to enable

 clcd sleep mode:

$ echo 1 > /sys/class/graphics/fb0/blank # to enter

$ echo 0 > /sys/class/graphics/fb0/blank # to leave

To test the CLCD with the “gpm” utility it is necessary to connect a keyboard and a mouse
through a USB hub to the board. Then the USB host and CLCD device driver have to be
enabled in the Linux command line using the options listed in Table 4 on page 22. If a CLCD
is connected and enabled, a shell login is automatically redirected on the CLCD panel.

By running the following command

$ gpm -m /dev/input/mouse0 -t imps2

GPM will stay in background as a daemon and the cursor on the CLCD screen will follow the
movements done with the mouse. To stop it, apply the following command:

$ gpm -k

Miscellaneous devices UM1942

158/220 DocID028276 Rev 1

8 Miscellaneous devices

This section contains information on drivers which are not part of the other sections.

8.1 General purpose input/output (GPIO)

The general purpose input/output (GPIO) is a flexible software controlled digital signal. Each
GPIO represents a bit connected to a particular pin, or “ball” on ball grid array (BGA)
packages. Board schematics show which external device connects to which GPIOs. Drivers
can be written generically, so that the board setup code passes such pin configuration data
to drivers.

8.1.1 GPIO software overview

Each GPIO input/output can be controlled in the software mode through an APB interface.
The APB interface generates read and write decodes for accesses to control, interrupt, and
data registers. A read-only decode is provided to access the ID codes. The APB interface
implements the storage elements for the data, data direction, mode control, interrupt
interface, and identification registers. The GPIO can be accessed from two levels in Linux:

 From the user space using the “sysfs” interface

 From other kernel modules

The GPIO software system architecture is shown in Figure 16.

DocID028276 Rev 1 159/220

UM1942 Miscellaneous devices

220

Figure 16. GPIO software stack

8.1.2 GPIO kernel source and configuration

The GPIO device driver is implemented by the following source files:

 The core features are implemented in “drivers/gpio/pl061.c”

 Common functions are in “drivers/gpio/gpiolib.c”

Table 29 lists the kernel configuration options related to GPIO support.

echo/cat

Linux drivers

User space

Kernel space

Hardware

Linux GPIO framework

(GPIOLIB)

GPIO controller

GPIO controller driver

sysfs interface

AM039723

Table 29. GPIO configurations

Configuration Description

CONFIG_GPIO_PL061 This enables support for the prime cell pl061 GPIO device.

CONFIG_ARCH_REQUIRE_GPIOLIB
Selecting this from the architecture code will cause the

“gpiolib” code to always get built in.

CONFIG_GPIOLIB
This enables GPIO support through the generic GPIO

library.

CONFIG_GPIO_SYSFS This enables the “sysfs” interface for GPIOs.

Miscellaneous devices UM1942

160/220 DocID028276 Rev 1

8.1.3 GPIO platform configuration

The GPIO driver, both for pl061 and plgpios are implemented in the GPIO framework. Both
these drivers must be informed about the platform details in order to work properly. All this
information is purely SoC dependent and has already been provided from the corresponding
SoC file to the driver while initialization and the user has not bother about them. The user
can directly look into the source for more information on this aspect.

8.1.4 GPIO usage

The following GPIO user mode operations are allowed from the user space: the request,
free, set and get direction, set and get value.

Request:

The user space may ask the kernel to export control of a GPIO pin to the user space by
writing its number to this file “/sys/class/gpio/export”.

Example: export a node

The following line creates a “gpio24 node” for GPIO #24, if it is not requested by the kernel
code:

echo 24 > /sys/class/gpio/export

Free:

The user space may ask the kernel to take back control of a GPIO pin from the user space
by writing its number to this file “/sys/class/gpio/unexport”.

Example: unexport a node

The following line removes the “gpio24” node exported using the “export” file:

echo 24 > /sys/class/gpio/unexport

Set and get direction:

Once a GPIO pin is exported, the files “direction” and “value” appear under the
“/sys/class/gpio/gpiopin/” folder. The direction of the GPIO can be set to OUT or IN by
writing “out” or “in” on the “direction” file.

Example: setting direction in the OUT mode

It is possible to set the direction of the pin 32 to out by using the following command:

echo "out" > /sys/class/gpio/gpio32/direction

General purpose GPIOs are enumerated from 24 to 39.

The GPIO pin is a file created after exporting a GPIO pin (for example, gpio30, gpio32).

Set and get value:

The value of the GPIO can be configured, if the GPIO is configured in the OUT mode and its
value can be read if the GPIO is configured in the IN mode. The value can be set by writing
1 or 0 in the “/sys/class/gpio/gpionr/value” file.

Example: setting GPIO pin 32

The pin 32 value can be set once the following command is used:

echo 1 > /sys/class/gpio/gpio32/value

DocID028276 Rev 1 161/220

UM1942 Miscellaneous devices

220

GPIO kernel mode

The following GPIO operations are allowed from kernel space: the request, set and get
direction and value, and configure the GPIO for interrupt.

Request:

A GPIO pin can be requested by calling following function:

/*

* gpio: is gpio pin number to be requested.

* label: is a string passed by user as a unique identification of
user.

*/

int gpio_request(unsigned gpio, const char *label);

The function “gpio_request()” will fail if an invalid GPIO pin number is used or the requesting
GPIOs has already been claimed with the same function call. The return value is 0 if
everything worked correctly otherwise a standard linux error is returned.

Free:

After using a previously requested GPIO pin, it must be set free. This can be done by using
the following function:

/* Gpio: is gpio pin number already requested */

void gpio_free(unsigned gpio);

Passing an invalid GPIO number to “gpio_free()” will fail.

Set direction

After requesting a GPIO pin, its direction must be set. This can be done using following
function:

/*

* gpio: is gpio pin number.

* value: is value to be set, 0 or 1.

*/

int gpio_direction_output(unsigned gpio, int value);

The return value is zero for success, otherwise a negative number is returned. The return
value must be checked because the get/set calls do not return errors and it is possible to
have a wrong configuration. Setting the direction can fail if the GPIO number is invalid, or
when that particular GPIO cannot be used in that mode.

For the value parameter, it is preferable to include and use the GPIO macros defined in the
corresponding CPU's “gpio.h” file.

Miscellaneous devices UM1942

162/220 DocID028276 Rev 1

Set and get value

After the direction of the GPIO is set, its value can be read or written. A value can be written
to a GPIO that is in the OUT mode and can read a value from a GPIO that is in the IN mode.
This can be done using following functions:

/*

* gpio: is gpio pin number.

* value: is value to be set, 0 or 1.

*/

void gpio_set_value(unsigned gpio, int value);

/* gpio: is gpio pin number. */

int gpio_get_value(unsigned gpio);

The values are zero to mean “low” and nonzero to mean “high”.

To enable the GPIO support at run-time it is necessary to configure the Linux kernel
command line using the options listed in Table 4 on page 22.

8.2 Application specific GPIO (AS GPIO)

The application specific GPIO is a flexible software controlled digital signal. Each GPIO
represents a bit connected to a particular pin, or “ball” on ball grid array (BGA) packages.
Board schematics show which external hardware connects to which GPIOs. Each AS GPIO
works as a general purpose I/O GPIO. However, a subset of AS GPIOs are configurable as
a pulse width modulator (PWM).

8.2.1 AS GPIO software overview

The operations of the GPIO pins are controlled by the registers, which can be, written/read
by software through the APB interface. The pins can be used as dual function pins. The dual
function may be either the PWM output, timer I/O and control, or the UART I/O and control.
The dual use selection will be defined at a higher level except for the PWM function. The
status of the pins can be captured into a register when commanded to do so by the software
or by an external signal. The source of the capture signal is set in a register by the software.
The GPIO pin can be used to generate interrupts when the pin is configured as an input.
The interrupt generation is programmable. Interrupt can be generated when there is
a change in polarity, on the rising/falling edge, or on both the edges of the input signal.

The GPIO module also contains pulse width modulators (PWM). The PWM is capable of
operating as a continuous repetitive pulse generator, or a single pulse generator. The
duration of high and low time for a repetitive pulse and the duration for a single pulse are
programmable. The PWM can be enabled/disabled by writing to the PWM enable register.
The polarity for a single pulse generator is also programmable. On reset the PWM output is
set to low. The PWM operates on the APB clock (PCLK).

DocID028276 Rev 1 163/220

UM1942 Miscellaneous devices

220

8.2.2 AS GPIO kernel source and configuration

The GPIO device driver is implemented by the following source files:

 The core features are implemented in “drivers/gpio/ark_gpio.c”

 Common functions are in “drivers/gpio/gpiolib.c”

Table 30 lists the kernel configuration options related to AS GPIO support.

8.2.3 AS GPIO platform configuration

The optional platform data passed from the machine for AS GPIOs is as follows:

/* gpio device registration */

struct ark_gpio_platform_data ark_gpio_plat_data = {

 .gpio_base= (unsigned)-1,

 .irq_base= STREAMPLUG1X_IRQ_ARK_GPIO_BASE,

 .enable_mask = ark_gpio_mask,

 .groups = STREAMPLUG_ARK_GPIO_GROUPS,

 .set_groups = STREAMPLUG_ARK_GPIO_SET_GROUP,

};

/* ark_gpio device registration */

struct resource ark_gpio_resources[] = {

{

 .name = "ark_gpio",

 .start = STREAMPLUG1X_ICM2_ARK_GPIO_BASE,

 .end = STREAMPLUG1X_ICM2_ARK_GPIO_BASE + SZ_4K - 1,

 .flags = IORESOURCE_MEM,

 }, {

 .name = "ark_gpio_irq",

 .start = STREAMPLUG1X_IRQ_APP_SUBS_ARK_GPIO,

 .flags = IORESOURCE_IRQ,

 },

};

struct platform_device streamplug10_ark_gpio_device = {

 .name = "streamplug_ark_gpio",

 .id = -1,

Table 30. AS GPIO configurations

Configuration Description

CONFIG_GPIO_ARK This option enables support for AS GPIO.

CONFIG_ARCH_REQUIRE_GPIOLIB
Selecting this from the architecture code will cause the

“gpiolib” code to always get built in.

CONFIG_GPIOLIB
This enables GPIO support through the generic GPIO

library.

CONFIG_GPIO_SYSFS This enables the “sysfs” interface for GPIOs.

Miscellaneous devices UM1942

164/220 DocID028276 Rev 1

 .num_resources = ARRAY_SIZE(ark_gpio_resources),

 .resource = ark_gpio_resources,

 .dev = {

 .platform_data = &ark_gpio_plat_data,

 },

};

8.2.4 AS GPIO usage

AS GPIOs are enumerated from 0 to 23. Only a subset of AS GPIOs is configurable in the
PWM mode (GPIO [0:7]), the other ones works in I/O modality. Within the two subgroups of
4 GPIOs of GPIO [0:7], the first one handles dual PWMs, while the second one handles
single PWMs.

I/O

The following GPIO operations are allowed from the user space: the request, free, set and
get direction, set and get value, configure PWMs.

Request:

The user space may ask the kernel to export control of a GPIO pin to the user space by
writing its number to this file “/sys/class/gpio/export”.

Example: export a pin

The following line creates a “gpio8 node” for GPIO #8, if it is not requested by the kernel
code:

echo 8 > /sys/class/gpio/export

Free:

The user space may ask the kernel to take back control of a GPIO pin from the user space
by writing its number to this file “/sys/class/gpio/unexport”.

Example: unexport a pin

The following line removes the “gpio8” node exported using the “export” file.

echo 8 > /sys/class/gpio/unexport

Set and get direction:

Once a GPIO pin is requested, the files “direction” and “value” can be found under the
“/sys/class/gpio/gpio<pin number>/” folder. The direction of the GPIO can be set to OUT or
IN by writing “out” or “in” in the “direction” file.

Example: setting direction in the OUT mode

The pin 16 can be set in the OUT mode with the following command:

echo "out" > /sys/class/gpio/gpio16/direction

Set and get value:

The value of the GPIO can be configured, if the GPIO is configured in the OUT mode and its
value can be read if the GPIO is configured in the IN mode. The value can be set by writing
1 or 0 in the “/sys/class/gpio/gpio<pinnumber>/value” file.

DocID028276 Rev 1 165/220

UM1942 Miscellaneous devices

220

Example: setting GPIO pin 16

The pin 16 value can be configured with the following command:

echo 1 > /sys/class/gpio/gpio16/value

PWM configuration

When exporting a PWM GPIO the following files are created:

“pwm_mode”: to select to the output type, where 0 means a simple value mode, 1 is the
PWM mode.

A set of parameters for the PWM configuration:

“pwm_enable”: to enable the PWM output, 1 means enable and 0 means disable.

“pwm_type”: to select between “continuous wave” and “one pulse one”: 0 -> means
continuous, while 1 one pulse only.

“pwm_high”: to define the duration of the high phase in clock units, applicable only when
the pwm_type is equal to 0.

“pwm_low”: to define the duration of the low phase in clock units, applicable only when the
pwm_type is equal to 0.

“pwm_width”: to define the duration of the pulse width in clock units, applicable only when
the pwm_type is equal to 1.

“pwm_polarity”: to define the polarity of the pulse, applicable only when the pwm_type is
equal to 1.

“pwm_prescaler”: as the width of the pulses is configured in clock units a prescaler can be
applied to the system one. The prescaler range is from 0 to 14, with the meaning listed in
Table 31.

Miscellaneous devices UM1942

166/220 DocID028276 Rev 1

If exporting a dual PWM GPIO (0 - 3) two sets of PWM parameters are available, because
the GPIO output is the combination of two PWMs.

Example: dual PWM configuration, pulse combined with continuous

echo 0 > /sys/class/gpio/export

echo out > /sys/class/gpio/gpio0/direction

echo 1 > /sys/class/gpio/gpio0/pwm_mode

echo 1 > /sys/class/gpio/gpio0/pwm_type

echo 0 > /sys/class/gpio/gpio0/pwm2_type

echo 1 > /sys/class/gpio/gpio0/pwm_polarity

echo 10000 > /sys/class/gpio/gpio0/pwm_width

echo 1000 > /sys/class/gpio/gpio0/pwm2_high

echo 1000 > /sys/class/gpio/gpio0/pwm2_low

echo 1 > /sys/class/gpio/gpio0/pwm2_enable ; echo 1 >
/sys/class/gpio/gpio0/pwm2_enable

Table 31. AS GPIO PWM prescaler configurations

Value Divider

0 8

1 16

2 32

3 64

4 128

5 256

6 512

7 1024

8 2048

9 4096

10 8192

11 16384

12 32768

13 65536

14 131072

DocID028276 Rev 1 167/220

UM1942 Miscellaneous devices

220

The resulting pin output is captured in Figure 17.

Figure 17. Dual PWM GPIO example

PAD MUX configuration

To enable the AS GPIO support at run-time it is necessary to configure the Linux kernel
command line using the options listed in Table 4 on page 22.

In particular, the value passed on the cmdline is “ark_gpio=on:nnnnnn” where “nnnnnn” is
the muxing definition.

Each digit represents a group of 4 GPIOs, while the groups are identified by letters from
a to f.

Some of them can be muxed onto different MFIOs, for example:

 Group a => MFIOs 32 - 35 (muxed selection option 1)

 Group b => MFIOs 28 - 31 (muxed selection option 1)

 Group c => MFIOs 16 - 19 (muxed selection option 1) or MFIOs 36 - 39 (muxed
selection option 2)

 Group d => MFIOs 20 - 23 (muxed selection option 1) or MFIOs 40 - 43 (muxed
selection option 2)

 Group e => MFIOs 48 - 51 (muxed selection option 1) or MFIOs 72 - 75 (muxed
selection option 2)

 Group f => MFIOs 52 - 55 (muxed selection option 1) or MFIOs 76 - 79 (muxed
selection option 2)

where 0 means the GPIOs are not exposed on pins.

Miscellaneous devices UM1942

168/220 DocID028276 Rev 1

For instance the following ATAG “ark_gpio=on:010011” means:

 AS GPIOs 0 - 3 (group a) off

 AS GPIOs 4 - 7 (group b) in MFIOs 28 - 31

 AS GPIOs 8 -1 1 (group c) off

 AS GPIOs 12 - 15 (group d) off

 AS GPIOs 16 - 19 (group e) in MFIOs 48 - 51

 AS GPIOs 20 - 23 (group f) in MFIOs 52 - 55

8.3 Watchdog timer (WDT) driver

A watchdog timer is a hardware device that triggers a system reset if its regularly generated
interrupts are not acknowledged. The idea behind it is to have a reliable way to bring the
system back from the hung state into the normal operation.

8.3.1 WDT software overview

The watchdog driver for the STreamPlug in the Linux support package is a part of the
standard Linux watchdog framework. Watchdog drivers in Linux are based on the character
device using the Misc device layer and provide a standard set of IOCTLs to the user.
Through this interface the watchdog time can be configured, programed and refreshed. The
standard Linux watchdog daemon can be used to configure and periodically pat (refresh)
the driver in order to avoid system reset. A software crash or hang would thus prevent this
pat from a happening and hence cause a system reset after timeout. Figure 18 illustrates
the watchdog framework.

DocID028276 Rev 1 169/220

UM1942 Miscellaneous devices

220

Figure 18. WDT software stack

8.3.2 WDT kernel source and configuration

In the Linux source tree, the watchdog driver is present in the file:
“drivers/watchdog/sp805_wdt.c”.

Table 32 lists the kernel configuration options affect the watchdog timer. These
configurations can be selected through the “make menuconfig” interface in Linux.

Watchdog daemon

/dev/watchdog

User space

Kernel space

Hardware

Misc. dev layer

Watchdog timer

Watchdog driver

AM039724

Table 32. WDT Linux kernel configurations

Configuration Description

CONFIG_WATCHDOG
This enables the watchdog support in the Linux kernel.

Enabling this option means that even on closing watchdog
the timer would remain active and would eventually reset.

CONFIG_WATCHDOG_NOWAYOUT

The default watchdog behavior is to stop the timer if the
process managing it closes the file “/dev/watchdog”. If Y is

used here, the watchdog cannot be stopped once it has
been started.

CONFIG_ARM_SP805_WATCHDOG This enables STreamPlug watchdog support.

Miscellaneous devices UM1942

170/220 DocID028276 Rev 1

Watchdog device driver interface with “Misc” device layer

As mentioned, the watchdog driver behaves as a character device, so normal file operations
(open, close, ioctl, write) can be used to access its features. For this, the driver uses the
“Misc” device layer and registers.

static const struct file_operations streamplug_wdt_fops = {

 .owner = THIS_MODULE,

 .write = streamplug_wdt_write,

 .unlocked_ioctl = streamplug_wdt_ioctl,

 .open = streamplug_wdt_open,

 .release = streamplug_wdt_release,

};

/* minor no. is standard, defined in miscdevice.h */

streamplug_wdt_miscdev.minor = WATCHDOG_MINOR;

streamplug_wdt_miscdev.name = "watchdog";

streamplug_wdt_miscdev.fops = &streamplug_wdt_fops;

/* register watchdog driver */

ret = misc_register(&streamplug_wdt_miscdev);

Watchdog driver usage

The watchdog device driver provides a char device interface (“/dev/watchdog”) to the user.
The standard file operations can be used to open and configure the watchdog device. The
following sections explain how the watchdog device can be used.

Opening WDT

The watchdog timer is enabled as soon as it is opened by the user. The usual open call can
be used to open the watchdog device.

char wdt_dev[] = "/dev/watchdog" int fd;

fd = open(wdt_dev, O_RDWR);

if (fd < 0) {

 printf("Error in opening device\n");

}

Configuring WDT

IOCTL calls can be used to program and configure the watchdog timer. The following code
snippet demonstrates the use of these IOCTLs.

int ret = 0;

int timeleft=0;

struct watchdog_info ident;

int timeout = 45; /* in seconds */

/* to find out supported options in watchdog */

DocID028276 Rev 1 171/220

UM1942 Miscellaneous devices

220

ret = ioctl(fd, WDIOC_GETSUPPORT, &ident);

/* to set time out */

ioctl(fd, WDIOC_SETTIMEOUT, &timeout);

/* to find out how much time is left before reset */

ret = ioctl(fd, WDIOC_GETTIMEOUT, &timeleft);

/* Refresh watchdog timer at every 10 secs to prevent reset */

while (1) {

 ioctl(fd, WDIOC,KEEPALIVE, 0);

 sleep(10);

}

Table 33 lists the standard “ioctl” calls supported by the STreamPlug watchdog driver.

For more information about Linux kernel support to the watchdog see the file:

linux-2.6.35/Documentation/watchdog.txt

8.3.3 WDT usage

A simple watchdog demonstration application is provided in the “/examples/watchdog/”
folder to perform some operations on the watchdog peripheral.

The application uses the watchdog device file “/dev/watchdog.” If a such file is not present,
the user may create it using the “mknod” command:

$ mknod /dev/watchdog c 10 130

The “watchdog-demo” using IOCTL provided by the ARM sp805 driver may be used to set
and get the watchdog timeout, to check the last boot cause and to kick the watchdog.

Set the watchdog timeout.

Table 33. Watchdog IOCTLs

IOCTLs Purpose

WDIOC_GETSUPPORT
The fields returned in the “ident” structure are: identity: A string identifying
the watchdog driver “firmware_version”: the firmware version of the card if

available. Options: A flags describing what the device supports.

WDIOC_KEEPALIVE
This “ioctl” does exactly the same thing as write to the watchdog device

and hence refreshes the timer.

WDIOC_SETTIMEOUT
Set time out in seconds, after which reset would be generated (if WDT is

not refreshed).

WDIOC_GETTIMEOUT Query the current timeout.

Miscellaneous devices UM1942

172/220 DocID028276 Rev 1

The test procedure is:

1. Open both UART terminals on the PC host and plug cables on RS232 connectors on
the board.

2. Run the “watchdog-demo” and verify at power-on that reset was made by “power-on
reset” procedure:

a) With the option “-i <interval time in sec>” the interval time may be changed
(passing a decimal integer value) for the next watchdog.

b) Without the option “-i <interval time in sec>” the interval time set to 60 s is
considered the default.

With the “watchdog-demo” running, the user can keep the watchdog alive by selecting the
option “w” or restarting the interval time with “i'”. In this way the user will simulate the kernel
behavior.

The user may perform two different tests with the “watchdog-demo”:

TEST 1: The user allows the watchdog to time out:

1. The user waits for a time equal to initial interval time.

2. The user will not close the “watchdog-demo” application and watch for OK Linux
restarting.

3. At next login, the user will start the “watchdog-demo” and will verify the cause of the
reset.

The following is an example of such a test:

Welcome to OKL STreamPlug

STreamPlug login: root

#

#

mount /dev/sda /mnt/

cd /mnt/examples/watchdog/

./watchdog-demo -i5

Set watchdog interval to 5

Current watchdog interval is 5

Last boot is caused by : Power-On-Reset

Use:

<w> to kick through writing over device file

<i> to kick through IOCTL

<x> to exit the program

VMMU: segment too big (80000000) for index 0

Linux version 2.6.35-vcpu-okl_streamplug+ (developer@Kernel.org) (gcc
version 4.3.3 (?'

Sourcery G++ Lite 2009q1-203)) #13 Thu Jul 25 14:35:57 CEST 2013

CPU: vCPUv5 [14069260] revision 0 (ARMv5TEJ)

CPU: VIVT data cache, VIV ST-ATag virq 6a, "timer_tick"

ATag microvisor_timer c2, 6a, "timer_microvisor_timer"

ATag virq 6b, "oklinux_signal"

ATag ksp_agent c3, 6b, "oklinux_ksp_agent"

ATag ksp_shared_mem fd100000, 4800000, 1e00000, "shm_KSP_SHARED_MEMORY"

DocID028276 Rev 1 173/220

UM1942 Miscellaneous devices

220

ATag Shared Buffer 40000000, 80000000, "pci_express"

ATag vclient c4, 20, 6c, "vserial_vtty0_vclient"

OKL4: vcpu_helper_page at 84579000/01fff000

VMMU:paging_init: VMMU: Cache management handing is possibly not
correct (SDK-1545). Built 1 zonelists in Zone order, mobility grouping
on.Total pages: 11938

Kernel command line: console=vcon0,115200n8 root=/dev/mtdblock2
rootfstype=ext2,jffs2 clcd ?'

=off pcie=off sata=off usb=on:host eth=on:primary: i2c=off ssp=off
uart1=off uart2=off?'

can=off firda=off fsmc=off sport=off ts=off ark_gpio=off

PID hash table entries: 256 (order: -2, 1024 bytes)

Dentry cache hash table entries: 8192 (order: 3, 32768 bytes) Inode-
cache hash table entries: 4096 (order: 2, 16384 bytes) Memory: 47MB
= 47MB total

Memory: 42468k/42468k available, 5660k reserved, 0K highmem

Virtual Kernel memory layout:

vector : 0x01fff000 - 0x02000000 (4 kB)

fixmap : 0xfff00000 - 0xfffe0000 (896 kB)

DMA : 0xef600000 - 0xf0000000 (10 MB)

vmalloc : 0x87000000 - 0xe9e00000 (1582 MB)

lowmem : 0x84000000 - 0x86f00000 (47 MB)

modules : 0x83000000 - 0x84000000 (16 MB)

.init : 0x84000000 - 0x84026000 (152 kB)

.text : 0x84026000 - 0x844ad000 (4636 kB)

.data : 0x844c8000 - 0x844fbbe0 (207 kB)

Hierarchical RCU implementation.

Verbose stalled-CPUs detection is disabled. NR_IRQS:121

Console: colour dummy device 80x30

Calibrating delay loop... 164.65 BogoMIPS (lpj=823296)

....

....

rtc-streamplug rtc-streamplug: rtc core: registered rtc-streamplug as
rtc0 i2c /dev entries driver

Linux video capture interface: v2.00

HM1355 driver loaded

sp805-wdt wdt: registration successful

dw_dmac: DesignWare DMA Controller, 8 channels

usbcore: registered new interface driver usbhid

usbhid: USB HID core driver

No device for DAI AKCODEC

....

....

Welcome to OKL STreamPlug

STreamPlug login: root

#

Miscellaneous devices UM1942

174/220 DocID028276 Rev 1

#

mount /dev/sda /mnt/

cd /mnt/examples/watchdog/

./watchdog-demo

Current watchdog interval is 60

Last boot is caused by : Watchdog

Use:

<w> to kick through writing over device file

<i> to kick through IOCTL

<x> to exit the program

TEST 2: the user will continue to refresh the watchdog:

1. The user may refresh before interval time expiring with one of the following options:

a) “w”

b) “i”

2. Run 'w' at least on time in order to refresh interval time to the value passed with 'i' or to
default one

3. Do not close watchdog-demo and wait for OK Linux restart

The option “x” closes the “watchdog-demo”, leaving the watchdog control back to OK Linux
kernel.

Interacting with watchdog via device file

The watchdog is automatically started. To stop the watchdog: write character “V” into
“/dev/watchdog” to prevent stopping the watchdog accidentally and close the
“/dev/watchdog” file.

To “kick” or to “feed” the watchdog any character can be written into the “/dev/watchdog” file.

Watchdog daemon

The watchdog is a daemon. It opens “/dev/watchdog” and keeps writing to it often enough to
keep the kernel from resetting, at least once per minute. Each write delays the reboot time
another minute. After a minute the watchdog hardware generates a reset. The watchdog
can be stopped without causing a reboot if the device “/dev/watchdog” is closed correctly,
unless the kernel is compiled with the “CONFIG_WATCHDOG_NOWAYOUT” option
enabled.

The default timeout period can be programmed by passing an argument to the watchdog
daemon in following manner:

$ watchdog -T 60

A “V” character writing causes a watchdog to stop. (See the “starting- stopping watchdog”
point above).

DocID028276 Rev 1 175/220

UM1942 Audio drivers

220

9 Audio drivers

This section describes the drivers that can be used for audio.

SPORT controller

The DSP's serial port (SPORT) can be utilized for a direct connection to a DSP or an other
device with a high speed serial interface. The SPORT controller is integrated interchip
sound (I2S) compliant that is an electrical serial bus interface standard used for connecting
digital audio devices together. The controller provides a simple I2S interface to industry
standard audio components. It supports the standard I2S frame format for transmitting and
receiving audio data.

It features:

 Synchronous serial data transfer

 Dedicated transmit and receive data lines

 Supports full duplex devices for simultaneous data transfer in both directions

 Independent transmit and receive clocks. It provides an internally generated serial
clock and frame sync signals in a wide range of frequencies, or accepts the clock and
frame sync input from an external source.

 Perform interrupt driven, single word transfers to and from the on-chip memory,
controlled by the processor.

 Execute DMA transfers to and from the on-chip memory where the SPORT interface
can automatically receive or transmit an entire block of data.

 Three 32-bit word length, programmable frame “sync” for every transmitted or received
word

 Can be configured to use early frame “sync”.

Audio drivers UM1942

176/220 DocID028276 Rev 1

SPORT controller software overview

The I2S driver is implemented within the “Advanced Linux Sound Architecture” (ALSA)
framework shown in Figure 19. The ALSA provides suitable layers and APIs to support
complex sound systems where it provides proper abstraction, so that each layer can be
independent of others. As a consequence the applications dealing with audio remain
immune to hardware and at the same time plugging new hardware is relatively easy.

Figure 19. ALSA framework

ALSA aplay/arecord

ALSA framework

User space

Kernel space

Hardware

ASoC layer

gstreamer

Platform Machine

I2S controller

driver
Audio support

DAC/ADC

(I2C)

SPORT

controller

(I2S)
I2S

DMA

AM039725

DocID028276 Rev 1 177/220

UM1942 Audio drivers

220

There is another layer of abstraction under the ALSA framework for embedded audio
environment. The abstraction is known as the ALSA system-on-chip (ASoC) layer. The
overall project goal of the ASoC layer is to provide better ALSA support for embedded
system-on-chip processors and portable audio codecs.

The ASoC layer is designed to address these issues and provide the following features:

 Codec independence. It allows reuse of codec drivers on other platforms and
machines.

 Easy I2S/PCM audio interface setup between the codec and SoC. Each SoC interface
and codec registers its audio interface. Capabilities with the core and codec are
subsequently matched and configured when the application hardware parameters are
known.

To achieve all this, the ASoC basically splits an embedded audio system into three
components:

Codec driver

The codec driver is platform independent and contains audio controls, audio interface
capabilities, the codec DAPM definition and codec I/O functions.

Platform driver

The platform driver contains the audio DMA engine and audio interface drivers.

Machine driver

The machine driver handles any machine specific controls and audio events. Complete
STreamPlug audio support is within the ASoC framework. It has both the play and record
feature.

SPORT controller kernel source and configuration

STreamPlug audio support is available below “sound/soc/streamplug/folder”.

 The I2S controller driver is present in “sound/soc/streamplug/streamplug_i2s.c”.

 The platform data defining the I2S PCM data format and PCM rate are present in
“sound/soc/streamplug/streamplug-i2s.h”.

 The STreamPlug ASoC platform driver is present in
“sound/soc/streamplug/streamplug_pcm.c”.

 STreamPlug ASoC machine implementation can be found in
“sound/soc/streamplug/streamplug-sport.c”.

Audio drivers UM1942

178/220 DocID028276 Rev 1

Table 34 lists the “Kconfig” options needed to enable the audio support over I2S for the
STreamPlug architecture.

SPORT controller platform configuration

In audio some essential parameters are required to play or record a song. These are the
sample rate, sample format, number of channel, etc. These parameters are passed from the
platform code. Platform data is used to pass the I2S capability like the maximum channel,
formats, rates, etc. This depends on the HW capability of the I2S controller and the manner
in which the platform intends to use it.

The following structure, “sport_platform_data”, is used to pass these capabilities which is
defined in “include/linux/streamplug_sport_reg.h”.

struct sport_platform_data {

 #define PLAY(1 << 0)

 #define RECORD(1 << 1)

 unsigned int cap;

 int channel;

 u8 swidth;

};

In above structure, the fields are:

cap

It is used to configure the PCM capability and can be equal to:

 PLAY, or

 RECORD

channel

The maximum number of channels supported by the controller.

snd_fmts

Sound formats like ”SNDRV_PCM_FMTBIT_S16_LE”, etc. supported by the controller.
Available formats are defined in “include/sound/pcm.h”.

Table 34. SPORT- I2S configurations

Configuration Description

CONFIG_SOUND It enables ALSA sound system support

CONFIG_SND It enables ALSA for SoC audio support

CONFIG_SND_PCM It enables PCM for SoC audio support

CONFIG_SND_STREAMPLUG_SOC It enables the ALSA SoC for the STreamPlug

CONFIG_SND_STREAMPLUG_SOC_I2S It enables I2S support

CONFIG_SND_STREAMPLUG_SOC_SPORT It enables machine support

CONFIG_SND_STREAMPLUG_SOC_VB it enables audio support

CONFIG_SND_SOC_AKCODEC It enables the codec

DocID028276 Rev 1 179/220

UM1942 Audio drivers

220

snd_rates

Sampling rates like “SNDRV_PCM_RATE_48000”, etc. supported. These are defined in
“include/sound/pcm.h/”.

play_dma_data

Configure the DMA channel for playing. This is DMA specific structure which can vary from
the platform to platform. It will configure the TX line, transfer burst size, etc. Please refer to
the DMA slave configuration section in Section 6.2: Direct memory access (DMA) on
page 139.

capture_dma_data

Similar to “play_dma_data”, but for the capture interface.

bool (*filter)(struct dma_chan *chan, void *slave)

This is also DMA specific data which is called on the requesting DMA channel to validate the
channel selection. Please refer DMA slave configuration section in Section 6.2. for details.

int (*i2s_clk_cfg)(struct i2s_clk_config_data *config)

The function is used for run-time audio clock configuration which is responsible to generate
the correct reference, bit and word clock. These clocks depend on the sample rate, sample
bit and number of the channel.

struct i2s_clk_config_data

This defines the clock related configuration data according to which the “i2s_clk_cfg”
programs the required I2S clocks.

The platform data passed to the “SPORT” controller driver is set below “arch/arm/mach-
streamplug/streamplug1x.c”:

static struct sport_platform_data sport_data = {

 .cap = PLAY | RECORD,

 .channel = 1,

 .swidth = 4,

};

Registration is set according to:

static struct resource sport_resources[] = {

{

 .name= "sport",

 .start= STREAMPLUG1X_ICM2_SPORT_BASE,

 .end = STREAMPLUG1X_ICM2_SPORT_BASE + SZ_4K - 1,

 .flags= IORESOURCE_MEM,

 },

 {

 .name= "sport_irq",

 .start= STREAMPLUG1X_IRQ_APP_SUBS_TS_SPORT,

 .flags= IORESOURCE_IRQ,

 }

};

Audio drivers UM1942

180/220 DocID028276 Rev 1

struct platform_device streamplug1x_sport_device = {

 .name = "streamplug-sport",

 .id = -1,

 .dev = {

 .coherent_dma_mask = ~0,

 .platform_data = &sport_data,

 },

 .num_resources = ARRAY_SIZE(sport_resources),

 .resource = sport_resources,

};

struct platform_device streamplug_pcm_device = {

 .name = "streamplug-pcm",

 .id = -1,

};

SPORT controller usage

There are standard utilities available in the Linux kernel for play, capture and control
interfaces:

 “aplay”, “alsaplay” and “play” to play audio files

 “arecord” to record audio into a file

 “alsacntl” to control interfaces features like the master volume control, L/R volume
control and ADC gain

Another user space application that performs both audio OUT/IN is the GStreamer that is
based also on the ALSA framework. Basic command for play an audio file is:

$ aplay *.wav

while to record audio it is possible to use the following command:

$ arecord -r 48000 -f S16_LE foo.wav

where: “-r” is for the rate and “-f “is for the format.

ALSA has its own “proc filesystem” tree (“/proc/asound”) where many useful information can
be found. The most useful are:

 “/proc/asound/card0”, card0 directory exists for the sound card the system knows about
the PCM devices area available on the card, there will be directories such as “pcm0p”
or “pcm0c” (the latest char is for “p = playback”, “c = capture”). They hold the PCM
information for each PCM stream.

 “/proc/asound/cards” lists the card specific files

 “/proc/asound/pcm” lists the allocated pcm streams.

 “/proc/asound/version” lists the version and date the ALSA subsystem module (or
kernel) was built.

DocID028276 Rev 1 181/220

UM1942 Video drivers

220

10 Video drivers

This section describes the drivers that can be used for a video.

10.1 Video for Linux Two framework

The “Video For Linux Two” is the second version of the “Video For Linux API”, a kernel
interface for the analog radio, video capture and video output drivers. This section talks only
about the V4L2 interface for video capture devices. (For the details of the V4L2 interface
with other devices like analog radio, please refer to www.linuxtv.org/downloads/v4l-dvb-
apis/).

Figure 20 illustrates the V4L2 subsystem.

Figure 20. V4L2 software overview

Details of the V4L2 framework can be found as well in the standard Linux documentation
“Documentation/video4linux/”.

V4L2
videobuf videodev

videobuf
-core

videobuf-
sg-dma

V4l2-
dev

V4l2-
ioclt

V4l2-int-
device
(old)

V4l2-
subdev
(new)

V4l2-device

Camera interface

V4L2 driver

Command
interface

Resolution
handling

Data format handling
(YUV/RAW/JPEG..)

Buffer
handling

Camera sensor module

V4L2 driver

Exposure
control

Lens
control

White
balance
control

Effect
control

Face
detect

Zoom
control

Strobe
control

.

.

.

AM039729

Video drivers UM1942

182/220 DocID028276 Rev 1

Programming a V4L2 device

Programming a V4L2 device consists of these steps:

1. Opening the device

2. Changing device properties, selecting a video input, video standard, picture brightness,
etc.

3. Negotiating a data format

4. Negotiating an input/output method

5. The actual input/output loop

6. Closing the device

In practice, most steps are optional and can be executed out of order (depending on the
V4L2 device type). To open and close V4L2 devices applications use the “open()” and
“close()” functions, respectively. Devices are programmed using the “ioctl()” function as
explained in the following sections. This section provides the details of only those IOCTLs
which are required to capture streaming data from a simple video capture device. An
example of such standard V4L2 capture application can be seen at
http://linuxtv.org/downloads/v4l-dvb-apis/capture-example.html.

For a detailed discussion of all V4L2 IOCTLs please refer to
http://www.linuxtv.org/downloads/v4l-dvb-apis/.

Opening and closing the driver

A video capture device can be opened using an “open()” call from the application with the
device name and mode of operation as parameters. The application can open the driver in
either blocking mode or non-blocking mode as shown in the code snippet below:

/* open a video capture device in blocking mode */

fd_blocking = open("/dev/video0", O_RDWR);

/* open a video capture device in non-blocking mode */

fd_nonblocking = open ("/dev/video0", O_RDWR | O_NONBLOCK);

The application can call the “close()” function with the respective file handle to close
a specific device as shown in the code snippet below:

/* closing a video capture device as per the mode */

close (fd_blocking);

close (fd_nonblocking);

DocID028276 Rev 1 183/220

UM1942 Video drivers

220

Video buffer management

A V4L2 driver allows two different types of memory allocation modes for allocating video
buffers:

 Driver-buffer mode (“MMAP I/O” method), for the MMAP I/O method, the application
requests memory from the driver by calling “VIDIOC_REQBUFS ioctl”. In this method,
the maximum number of buffers is limited to “VIDEO_MAX_FRAME” (which is usually
set to 32).

 User-buffer mode (user pointer I/O method), for the user pointer method, the
application needs to allocate physically contiguous memory using some other
mechanism in the user space and then provide a pointer to this memory to the video
capture driver.

This section only presents the MMAP I/O method (for details of user pointer I/O method
please refer to standard Linux documentation “Documentation/video4linux/videobuf”).
Below are the major steps the application needs to perform for the buffer allocation using
the MMAP I/O method.

Allocating video buffers using MMAP I/O method:

The “ioctl” used by the user space application to allocate video buffers is
“VIDIOC_REQBUFS”. This “ioctl” takes the following arguments:

 Pointer to the instance of “v4l2_requestbuffers” structure

 Buffer type (set to” V4L2_BUF_TYPE_VIDEO_CAPTURE” for capture devices)

 Number of buffers desired, and

 Memory type (set to “V4L2_MEMORY_MMAP”).

The following code snippet depicts how to use the “VIDIOC_REQBUFS ioctl”:

struct v4l2_requestbuffers reqbuf; /* buffer request parameters */

reqbuf.count = numbuffers;

reqbuf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;

reqbuf.memory = V4L2_MEMORY_MMAP;

ret = ioctl(fd , VIDIOC_REQBUFS, &reqbuf);

if(ret) {

 printf("cannot allocate memory\n");

 close(fd);

 return -1;

}

Note: It is important to know that this “ioctl” can be called only once from the application.
“Numbuffers” must have a value equal or greater than 2.

Video drivers UM1942

184/220 DocID028276 Rev 1

Mapping the kernel space video buffer address to user space:

Mapping the kernel space video buffer to the user space can be done via “mmap”. The
buffer size and physical address of the buffer can be used to get the user space address.
The following code snippet depicts how to use the “mmap”:

/* allocate buffer by VIDIOC_REQBUFS */

...

/* query the buffer using VIDIOC_QUERYBUF */

...

/* addr holds the user space address of the video buffer */

int addr;

addr = mmap (NULL /* start anywhere */, buf.length,

 PROT_READ | PROT_WRITE /* required */, MAP_SHARED /* recommended */,

 fd, buf.m.offset);

/* buffer.m.offset is same as that returned by VIDIOC_QUERYBUF */

Not all video capture devices use the same kind of buffers. In fact, there are (at least) three
common variations:

1. Buffers which are scattered in both the physical and (kernel) virtual address spaces.
(Almost) all user space buffers are like this, but it makes great sense to allocate kernel
space buffers this way as well when it is possible. Unfortunately, it is not always
possible; working with this kind of the buffer normally requires hardware which can do
scatter/gather DMA operations.

2. Buffers which are physically scattered, but which are virtually contiguous; buffers
allocated with “vmalloc()”, in other words. These buffers are just as hard to use for DMA
operations, but they can be useful in situations where DMA is not available but virtually-
contiguous buffers are convenient.

3. Buffers which are physically contiguous. Allocation of this kind of the buffer can be
unreliable on fragmented systems, but simpler DMA controllers cannot deal with
anything else.

“Videobuf” can work with all three types of buffers, but the driver author must pick one at the
outset and design the driver around that decision. Depending on which type of buffers is
being used, the driver should include one of the following files:

media/videobuf-dma-sg.h /* Physically scattered */

media/videobuf-vmalloc.h /* vmalloc() buffers */

media/videobuf-dma-contig.h /* Physically contiguous */

DocID028276 Rev 1 185/220

UM1942 Video drivers

220

The driver's data structure describing a V4L2 device should include a “struct
videobuf_queue” instance for the management of the buffer queue, along with a “list_head”
for the queue of available buffers. There will also need to be an interrupt safe spin lock
which is used to protect (at least) the queue. The following “videobuf_queue_ops” are
simple callbacks to help the “videobuf” deal with the management of buffers:

struct videobuf_queue_ops {

 int (*buf_setup)(struct videobuf_queue *q, unsigned int *count,
unsigned int *size);

 int (*buf_prepare)(struct videobuf_queue *q, struct videobuf_buffer
*vb,

 enum v4l2_field field);

 void (*buf_queue)(struct videobuf_queue *q, struct videobuf_buffer
*vb);

 void (*buf_release)(struct videobuf_queue *q, struct videobuf_buffer
*vb);

};

These callbacks must be implemented by the video capture driver (for details please refer to
“Documentation/video4linux/videobuf”).

V4L2 IOCTL handling

This “ioctl” is used to identify video capture devices compatibility with the V4L2 specification
and to obtain information about individual hardware capabilities.

Query capabilities (VIDIOC_QUERYCAP)

Capabilities of a video capture device, for example, can be
“V4L2_CAP_VIDEO_CAPTURE” and “V4L2_CAP_STREAMING”. The details of this “ioctl”
and the mechanisms to use are depicted in the snippet below:

struct v4l2_capability capability;

ret = ioctl(fd, VIDIOC_QUERYCAP, &capability);

if(ret) {

 printf("Cannot do QUERYCAP\n");

 return -1;

}

if(capability.capabilities & V4L2_CAP_VIDEO_CAPTURE) {

 printf("Capture capability is supported\n");

}

if(capability.capabilities & V4L2_CAP_STREAMING) {

 printf("Streaming is supported\n");

}

where “VIDIOC_QUERYCAP” is the “ioctl” name.

Video drivers UM1942

186/220 DocID028276 Rev 1

Format enumeration (VIDIOC_ENUM_FMT)

This “ioctl” is used to enumerate the information of the format (horizontal pitch/pixel length,
pixel format, etc.) that are supported by underlying the video capture device. The details of
this “ioctl” and the mechanisms to use are depicted in the snippet below:

struct v4l2_fmtdesc fmt;

int i = 0;

while(1) {

 fmt.index = i;

 ret = ioctl(fd, VIDIOC_ENUM_FMT, &fmt); /* ioctl name:
VIDIOC_ENUM_FMT */

 if(ret) {

 break;

 }

 printf("description = %s\n",fmt.description);

 if(fmt.type == V4L2_CAP_VIDEO_CAPTURE)

 printf("Video Capture type\n");

 if(fmt.pixelformat == V4L2_PIX_FMT_UYVY)

 printf("V4L2_PIX_FMT_UYVY\n");

 i++;

}

Set format (VIDIOC_S_FMT)

This “ioctl” is used to set the format for the underlying video capture device. The driver
validates the parameters sent as arguments to this ioctl call. It returns an error if parameters
are not valid; otherwise, it configures these parameters. The driver calculates the bytes per
line and the image size based on the hardware capabilities and the application can retrieve
the same using the “VIDIOC_G_FMT” [Get format (VIDIOC_G_FMT)] ioctl. The details of
this ioctl and the mechanisms to use are depicted in the snippet below:

struct v4l2_format fmt;

fmt.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;

fmt.fmt.pix.pixelformat = V4L2_PIX_FMT_UYVY;

fmt.fmt.pix.height = height; fmt.fmt.pix.width = width;

fmt.fmt.pix.field = V4L2_FIELD_NONE;

ret = ioctl(fd, VIDIOC_S_FMT, &fmt);

if(ret) {

 perror("VIDIOC_S_FMT\n");

 close(fd);

 return -1;

}

DocID028276 Rev 1 187/220

UM1942 Video drivers

220

Get format (VIDIOC_G_FMT)

This “ioctl” is used to get the current format from the underlying video capture device. The
driver provides format parameters in the structure pointer passed as an argument. The
details of this ioctl and the mechanisms to use are depicted in the snippet below:

struct v4l2_format fmt;

fmt.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;

ret = ioctl(fd, VIDIOC_G_FMT, &fmt);

if(ret) {

 perror("VIDIOC_G_FMT\n");

 close(fd);

 return -1;

}

Try format (VIDIOC_TRY_FMT)

This “ioctl” is used to validate a specific format for the underlying video capture device. The
capture driver does know hardware changes for this ioctl. It just checks if it can support the
requested format. The driver returns an error if parameters are not valid. The details of this
ioctl and the mechanisms to use are depicted in the snippet below:

struct v4l2_format fmt;

fmt.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;

fmt.fmt.pix.pixelformat = V4L2_PIX_FMT_UYVY;

fmt.fmt.pix.height = height; fmt.fmt.pix.width = width;

fmt.fmt.pix.field = V4L2_FIELD_NONE;

ret = ioctl(fd, VIDIOC_TRY_FMT, &fmt);

if(ret) {

 perror("VIDIOC_TRY_FMT\n");

 close(fd);

 return -1;

}

Query crop capabilities (VIDIOC_CROPCAP)

This “ioctl” is used to query the crop capabilities of the underlying capture device.
Applications use this to query the cropping limits, the pixel aspect of the image, and to
calculate the scale factor. Details of this ioctl and mechanism to use the same are depicted
in the snippet below:

struct v4l2_cropcap cropcap;

memset(&cropcap,0,sizeof (cropcap));

ret = ioctl(fd, VIDIOC_CROPCAP, &cropcap);

if(ret) {

 perror("VIDIOC_CROPCAP\n");

 close(fd);

 return -1;

}

Video drivers UM1942

188/220 DocID028276 Rev 1

Set crop (VIDIOC_S_CROP)

To change the cropping rectangle applications initialize the type and “struct v4l2_rect”
substructure named “c” of a “v4l2_crop structure” and call the “VIDIOC_S_CROP” ioctl with
a pointer to this structure. The driver first adjusts the requested dimensions against
hardware limits, i.e.: the bounds given by the capture/output window and it rounds to the
closest possible values of the horizontal and vertical offset, width and height. Secondly, the
driver adjusts the image size (the opposite rectangle of the scaling process, source or target
depending on the data direction) to the closest size possible while maintaining the current
horizontal and vertical scaling factor. Finally the driver programs the hardware with the
actual cropping and image parameters. “VIDIOC_S_CROP” is a write-only ioctl, it does not
return the actual parameters. To query them applications must call “VIDIOC_G_CROP” and
“VIDIOC_G_FMT”. Details of this ioctl and mechanism to use the same are depicted in the
snippet below:

/* display half of the image area starting at 0,0 */

struct v4l2_crop crop;

crop.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;

crop.c.height = image_height/2;

crop.c.width = image_width/2;

crop.c.top = 0;

crop.c.left = 0;

ret = ioctl(fd, VIDIOC_S_CROP, &crop);

if(ret) { perror("VIDIOC_S_CROP\n");

 close(fd);

 return -1;

}

Get crop (VIDIOC_G_CROP)

This “ioctl” is used by the user space application to get the current crop rectangle bounds.
Details of this ioctl and mechanism to use the same are depicted in the snippet below:

struct v4l2_crop crop;

crop.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;

ret = ioctl(fd, VIDIOC_G_CROP, &crop);

if(ret) {

 perror("VIDIOC_G_CROP\n");

 close(fd);

 return -1;

}

printf ("top = %d\n",crop.c.top);

printf("left = %d\n",crop.c.left);

printf ("height = %d\n",crop.c.height);

printf("width = %d\n",crop.c.width);

DocID028276 Rev 1 189/220

UM1942 Video drivers

220

Queue a video buffer (VIDIOC_QBUF)

This “ioctl” is used by the user space application to place a video buffer in the video buffer
queue. The application has to specify the buffer type (“V4L2_BUF_TYPE_VIDEO_
CAPTURE”), buffer index, and memory type (“V4L2_MEMOR”) at the time of queuing. The
driver adds the buffer at the tail of the video buffer queue. Details of this ioctl and
mechanism to use the same are depicted in the snippet below:

struct v4l2_buffer buf;

buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;

buf.type = V4L2_MEMORY_MMAP;

buf.index = 0;

ret = ioctl(fd, VIDIOC_QBUF, &buf);

if(ret) {

 perror("VIDIOC_QBUF\n");

 close(fd);

 return -1;

}

DeQueue a video buffer (VIDIOC_DQBUF)

This “ioctl” is used by the user space application to dequeue a video buffer from the video
buffer queue. The application has to specify the buffer type
(“V4L2_BUF_TYPE_VIDEO_CAPTURE”), and memory type (“V4L2_MEMORY_MMAP”) at
the time of dequeuing. The driver provides the latest video buffer processed at its end.
Details of this ioctl and mechanism to use the same are depicted in the snippet below:

struct v4l2_buffer buf;

buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;

buf.type = V4L2_MEMORY_MMAP;

buf.index = 0;

ret = ioctl(fd, VIDIOC_DQBUF, &buf);

if(ret) {

 perror("VIDIOC_DQBUF\n");

 close(fd);

 return -1;

}

Video drivers UM1942

190/220 DocID028276 Rev 1

Stream on (VIDIOC_STREAMON)

This “ioctl” is used by the user space application to start video capture functionality. If
streaming is already started, this ioctl call returns an error. Details of this ioctl and
mechanism to use the same are depicted in the snippet below:

int ret;

ret = ioctl(fd, VIDIOC_STREAMON, NULL);

if(ret) {

 perror("VIDIOC_STREAMON \n");

 close(fd);

 return -1;

}

Stream off (VIDIOC_STREAMOFF)

This “ioctl” is used by the user space application to stop video capture functionality. If
streaming is not yet started, this ioctl call returns an error. Details of this ioctl and
mechanism to use the same are depicted in the snippet below:

int ret;

ret = ioctl(fd, VIDIOC_STREAMOFF, NULL);

if(ret) {

 perror("VIDIOC_STREAMOFF \n");

 close(fd);

 return -1;

}

DocID028276 Rev 1 191/220

UM1942 Video drivers

220

10.2 SoC-Camera framework

Usually the external on-board sensor is connected to the SoC via I2C bus which acts as the
control path whereas an 8-bit parallel interface between the sensor and SoC is used as the
data transfer path. There are also some additional signals like a pixel clock, HSYNC and
VSYNC which are used to signify valid data on the data bus. Figure 21 illustrates such
a connection.

Figure 21. SoC-Camera interface

For a camera connection like the one described above, Linux provides a framework called
“Video for Linux 2” (V4L2) which supports a wide variety of video capture devices. Using the
V4L2 framework a user space application can access and configure a video capture device.
However, due to the broadness of the V4L2 framework, a new framework called
“SoC-Camera” framework was devised which is a subset of the V4L2 and provides a unified
API between camera host drivers and camera sensor drivers. It implements a V4L2
interface to the user (currently only the “mmap” method is supported).

This subsystem has been written to connect drivers for system-on-chip (SoC) video capture
interfaces with drivers for CMOS camera sensor chips to enable the reuse of sensor drivers
with various hosts. The subsystem has been designed to support multiple camera host
interfaces and multiple cameras per interface, although most applications have only one
camera sensor.

For the details of the SoC-Camera framework and how user space applications use the
same please refer to Linux documentation at “Documentation/video4linux/soc-camera.txt”.

SoC
Camera

interface
Sensor

module

MASTER CLK

PIX CLK

HSYNCH

VSYNCH

DATA [7:0]

I2C control interface

AM039726

Video drivers UM1942

192/220 DocID028276 Rev 1

Figure 22 depicts the SoC-Camera subsystem data/control flows:

Figure 22. SoC-Camera software overview

The STreamPlug camera is only supposed to handle one camera on its transport stream
(TS) interface.

Request for data/image data in expected format

Android
application

Android library
Camera

applications

gstreamer

v4l2-utils

libv4l2

v4l2 framework

SoC-camera
framework Camera

interface
driver

Sensor
driver

Camera interface
hardware

Sensor
hardware

DATA + SYNC

I2C
Control

interface

Kernel
space

Application
space

Camera interface

Resolution
handling

Data format
handling

(YUV / RAW / JPEG ..)

Buffer
 handling

Sensor module

Exposure
control

Lens
control

White
balance
control

Effect
control

Zoom
control

.

.

.

AM039730

DocID028276 Rev 1 193/220

UM1942 Video drivers

220

10.2.1 Camera interface

The camera interface module acts a simple video capture device when interfaced with an
external image sensor.

Camera host API

A host camera driver is registered using the following function:

soc_camera_host_register(struct soc_camera_host *);

where the parameter may be a struct like the following:

static struct soc_camera_host streamplug_soc_camera_host = {

 .drv_name = STREAMPLUG_CAM_DRV_NAME,

 .ops = &streamplug_soc_camera_host_ops,

};

All camera host methods are passed in a struct soc_camera_host_ops:

static struct soc_camera_host_ops streamplug_soc_camera_host_ops = {

 .owner= THIS_MODULE,

 .add= streamplug_camera_add_device,

 .remove= streamplug_camera_remove_device,

 .suspend= streamplug_camera_suspend,

 .resume= streamplug_camera_resume,

 .set_crop= streamplug_camera_set_crop,

 .get_formats= streamplug_camera_get_formats,

 .put_formats= streamplug_camera_put_formats,

 .set_fmt= streamplug_camera_set_fmt,

 .try_fmt= streamplug_camera_try_fmt,

 .init_videobuf= streamplug_camera_init_videobuf,

 .reqbufs= streamplug_camera_reqbufs,

 .poll= streamplug_camera_poll,

 .querycap= streamplug_camera_querycap,

 .set_bus_param= streamplug_camera_set_bus_param,

};

where:

 “.add” and “.remove” methods are called when a sensor is attached to or detached from
the host, apart from performing host internal tasks they shall also call sensor driver's
“.init” and “.release” methods respectively.

 “.suspend” and “.resume” methods implement host's power management functionality
and it's their responsibility to call respective sensor's methods.

 “.try_bus_param” and “.set_bus_param” are used to negotiate physical connection
parameters between the host and the sensor.

 “.init_videobuf” is called by SoC-Camera the core when a video device is opened.

Further video-buffer management is implemented completely by the specific camera host
driver. The rest of the methods are called from respective V4L2 operations.

Video drivers UM1942

194/220 DocID028276 Rev 1

Camera API

Sensor drivers can use “struct soc_camera_link”, typically provided by the platform and
used to specify to which camera host bus the sensor is connected and provide platform
“.power” and “.reset” methods for the camera. The “soc_camera_device_register()” and
“soc_camera_device_unregister()” functions are used to add a sensor driver to or remove
one from the system. The registration function takes a pointer to “struct
soc_camera_device” as the only parameter. This struct can be initialized, for example, as
follows:

/* link to driver operations */

icd->ops = &mt9m001_ops;

/* link to the underlying physical (e.g., i2c) device */

icd->control = &client->dev;

/* window geometry */

icd->x_min = 20;

icd->y_min = 12; icd->x_current = 20;

icd->y_current = 12; icd->width_min = 48;

icd->width_max = 1280; icd->height_min = 32; icd->height_max = 1024;

icd->y_skip_top = 1;

/* camera bus ID, typically obtained from platform data */

icd->iface = icl->bus_id;

The struct “soc_camera_ops” provides “.probe” and “.remove” methods, which are called by
the SoC-Camera core, when a camera is matched against or removed from a camera host
bus, “.init”, “.release”, “.suspend”, and “.resume” are called from the camera host driver as
discussed above. Other members of this struct provide respective V4L2 functionality.

The “struct soc_camera_device” also links to an array of “struct soc_camera_data_format”,
listing pixel formats, supported by the camera.

10.2.2 V4L2 subdev API

Camera drivers are interfaced to the SoC-Camera core and to host drivers over the V4L2-
subdev API, but do not return any results. Therefore all camera drivers shall reply to
“.g_fmt()” requests with their current output geometry. This is necessary to correctly
configure the camera bus. The “.s_fmt()” and “.try_fmt()” drivers have to be also
implemented. The sensor window and scaling factors have to be maintained by camera
drivers internally. According to the V4L2 API all capture drivers must support the
“VIDIOC_CROPCAP ioctl”, hence we rely on camera drivers implementing “.cropcap()”. If
the camera driver does not support cropping, it may choose to not implement “.s_crop()”,
but to enable cropping support by the camera host driver at least the “.g_crop” method must
be implemented.

User window geometry is kept in “.user_width” and “.user_height” fields in “struct
soc_camera_device” and used by the SoC-Camera core and host drivers. The core updates
these fields upon successful completion of a “.s_fmt()” call, but if these fields change
elsewhere, e.g.: during “.s_crop()” processing, the host driver is responsible for updating
them.

DocID028276 Rev 1 195/220

UM1942 Video drivers

220

10.3 Video transport stream (TS)

The video transport stream (TS) is a byte-wide parallel port that provides the I/O interface to
peripheral devices. This interface is typically used to interface to external devices that either
generate or input 8-bit data streams, such as MPEG encoders and decoders. The interface
can be configured as an input or as an output. The interface can either be the master of the
TS clock, or it can use an externally generated clock for the bus. The TS interface is
a unidirectional interface.

As a transmitter the TS interface can control the flow of data. As a receiver the TS interface
has no flow control. The receiver must be prepared to receive all data with no method of
slowing down the interface or recapturing missed data.

In the STreamPlug the TS has been used to transfer the data from the image sensor to the
V4L2 framework.

10.3.1 TS software overview

Figure 23 illustrates how the TS driver is embedded into the camera interface to transfer
data from the image sensor to the video for the Linux two framework (V4L2).

Figure 23. TS software overview

SoC-camera framework

V4L2 application
User space

Kernel space

Hardware

Sensor driver

Camera

interface

driver

TS

Image sensor

AM039727

Video drivers UM1942

196/220 DocID028276 Rev 1

10.3.2 TS kernel source and configuration

The most important files containing the source code for the TS device driver are following:

arch/arm/plat-streamplug/misc.c

arch/arm/mach-streamplug/ipswrst_ctrl.c

arch/arm/mach-streamplug/include/mach/generic.h

arch/arm/mach-streamplug/include/mach/streamplug10.h

arch/arm/mach-streamplug/clock.c

arch/arm/mach-streamplug/padmux.c

arch/arm/mach-streamplug/streamplug1x.c

drivers/media/video/streamplug_camera.c

drivers/media/video/hm1355.c

include/media/hm1355.h

include/linux/streamplug_ts_reg.h

The “HM1355” is an image sensor used only for a demonstration purpose.

The Linux kernel must be built with the options listed in Table 35 in order to enable the
support for the V4L2, the SoC-Camera and the TS device driver.

Table 35. TS Linux kernel configuration options

Configuration Description

CONFIG_MEDIA_SUPPORT Enable framework for media support

CONFIG_VIDEO_DEV Enable video devices

CONFIG_VIDEO_V4L2_COMMON Enable common V4L2 support

CONFIG_VIDEO_MEDIA Enable video media

CONFIG_VIDEO_V4L2 Enable V4L2

CONFIG_VIDEOBUF_GEN Enable video buffer

CONFIG_VIDEOBUF_DMA_CONTIG Enable video buffer with DMA

CONFIG_VIDEO_CAPTURE_DRIVERS Enable video capture device drivers

CONFIG_VIDEO_ADV_DEBUG

CONFIG_VIDEO_HELPER_CHIPS_AUTO

CONFIG_VIDEO_IR_I2C Enable I2C for video devices

CONFIG_SOC_CAMERA Enable SoC-Camera framework

CONFIG_SOC_CAMERA_HM1355

CONFIG_VIDEO_STREAMPLUG Enable STreamPlug specific video support

CONFIG_V4L_USB_DRIVERS

CONFIG_USB_VIDEO_CLASS

CONFIG_USB_VIDEO_CLASS_INPUT_EVDEV

DocID028276 Rev 1 197/220

UM1942 Video drivers

220

10.3.3 TS platform configuration

The platform data associated to the TS are in “arch/arm/mach-streamplug/streamplug1x.c”.

/* camera interface 0 device registration */

static int soc_camera_set_bus_param(struct soc_camera_link *link,

 unsigned long flags)

{

 return 0;

}

static unsigned long soc_camera_query_bus_param(struct soc_camera_link
*link)

{

 return 0;

}

static void soc_camera_free_bus(struct soc_camera_link *link)

{

}

static struct i2c_board_info soc_camera_i2c[] = {

 {

 I2C_BOARD_INFO("hm1355", 0x24),

 },

};

static struct streamplug_camera_pdata camera_pdata = {

 .flags= HM1355_FLAG_VFLIP | HM1355_FLAG_HFLIP | \ HM1355_FLAG_8BIT,

 .mclk_10khz = HM1355_MCLK_12MHZ,

 .pclko_10khz = HM1355_PCLKO_18MHZ

};

static struct soc_camera_link iclink[] = {

{

 .bus_id= 0, /* Must match with the camera ID */

 .board_info= &soc_camera_i2c[0],

 .i2c_adapter_id= 0,

 .query_bus_param= soc_camera_query_bus_param,

 .set_bus_param= soc_camera_set_bus_param,

 .free_bus= soc_camera_free_bus,

 .module_name= "hm1355",

 .priv= &camera_pdata,

 },

};

static struct platform_device soc_camera[] = {

Video drivers UM1942

198/220 DocID028276 Rev 1

 {

 .name= "soc-camera-pdrv",

 .id = 0,

 .dev= {

 .platform_data = &iclink[0],

 },

 },

};

static struct resource streamplug_camera_resources[] = {

{

 .start = STREAMPLUG1X_ICM2_TS_BASE,

 .end = STREAMPLUG1X_ICM2_TS_BASE + SZ_4K - 1,

 .flags = IORESOURCE_MEM,

 },

 {

 .name= "ts_irq",

 .start= STREAMPLUG1X_IRQ_APP_SUBS_TS_SPORT,

 .flags= IORESOURCE_IRQ,

 }

};

/* camera interface 0 device registeration */

struct platform_device streamplug1x_ts_device = {

 .name = "streamplug-ts",

 .id = 0,

 .dev = {

 .coherent_dma_mask = ~0,

 .platform_data = &camera_pdata,

 },

 .num_resources = ARRAY_SIZE(streamplug_camera_resources),

 .resource = streamplug_camera_resources,

};

DocID028276 Rev 1 199/220

UM1942 Video drivers

220

10.3.4 TS usage

The TS device driver can be tested using a user space application like GStreamer to
capture data from, for example, the image capture sensor peripheral. In Linux, such type of
peripherals are accessed through the SoC-Camera framework. As the SoC-Camera
framework is a subset of the V4L2 which provides a unified API between camera host
drivers and camera sensor drivers, applications that are written using standard the V4L2
APIs and IOCTLs can directly work with the drivers written in the SoC-Camera framework,
with the only limitation being that only the MMAP I/O method can be used. For details of the
V4L2 framework and how to write user space applications to access video capture devices
using the V4L2, please refer to previous sections.

To enable the TS support at run-time it is necessary to configure the Linux kernel command
line using one of the options listed in Table 4 on page 22.

Once the Linux kernel has finished the startup phase, some parameters of the V4L2
framework can be configured using the “v4l2-dbg” utilities provided with the root filesystem.
Then the GStreamer tool can be found either in the auxiliary filesystem or in an external one
like a USB key or an SATA disk.

The following are the steps necessary to capture a stream of images from the image sensor:

1. Mount the USB device (“mount /dev/sdX /mnt”).

2. Export the following environment variables:

export PATH=:$PATH:/mnt/<gstreamer folder>/usr/bin

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/mnt/<gstreamer folder>/usr/lib

export GST_PLUGIN_PATH=/mnt/<gstreamer folder>/usr/lib:/mnt/<gstreamer
folder>/usr/lib/ ?'

gstreamer-0.10

export GST_PLUGIN_SCANNER=/mnt/<gstreamer folder>/usr/libexec/gstreamer-
0.10/gst-plugin- ?'

scanner

3. [Optional] mount the SATA device if the data have to be stored on the SATA disk.

4. Configure the image sensor. These values set the minimum delay between 2
successive frames according to the target device:

v4l2-dbg --set-register=16 0x01 v4l2-dbg --set-register=17 0x4F

Such values must be chosen depending on the peripheral used to save the image data
stream. Table 36 lists some of them.

Table 36. Image sensor delay parameter

Frame size DDR USB SATA

VGA (648 x 488) 0x014F 0x08FF 0x18FF

FULL FRAME (1022 x 728) 0x014F 0x18FF 0x18FF

FULL FRAME (1022 x 808) 0x014F 0x18FF 0x18FF

FULL FRAME (1022 x 1032) 0x014F 0x18FF 0x28FF

Video drivers UM1942

200/220 DocID028276 Rev 1

Run the GStreamer application in the background mode using one of the following
command:

- Data stream stored on DDR:

gst-launch v4l2src device=/dev/video0 num-buffers=100 ! 'video/x-raw-
yuv,width=648,height=488, framerate=20/1' ! filesink

location=/tmp/<FileName>.raw &

- Data stream stored on USB device:

gst-launch v4l2src device=/dev/video0 num-buffers=100 ! 'video/x-raw-
yuv,width=648,height=488, framerate=20/1' ! filesink

location=/mnt/<FileName>.raw &

- Data stream stored on SATA:

gst-launch v4l2src device=/dev/video0 num-buffers=100 ! 'video/x-raw-
yuv,width=648,height=488, framerate=20/1' ! filesink

location=/sata/<FileName>.raw &

DocID028276 Rev 1 201/220

UM1942 Virtualized devices

220

11 Virtualized devices

The “Kernel Support Package” (KSP) is a software layer which allows the virtualized Linux
kernel to access through an SoC interface the hardware components (timers, interrupts,
etc.) and it is active only in the full configuration.

The KSP is composed by five interface classes:

 Boot interface which provides the entry point of a boot image, performs CPU and
platform initializations before starting the kernel.

 System interface which provides generic functionalities for cache management, idle
handling and so on.

 Interrupt controller which provides interrupt decoding and management using the
platform interrupt controller. The KSP is required to decode incoming interrupts,
manage masking and unmasking of interrupts, and maintain interrupt registration data
on behalf of the kernel.

 Device drivers which provided device drivers needed by the kernel (serial console,
timer, VIC, etc.)

 Platform extensions.

Access to lower hardware configuration, or the shared information between different OSs is
guaranteed by some APIs, provided by the SoC interface.

The KSP agent API is an object that mediates access to the KSP procedure call “syscall”.
It provides:

 A unique user identifier to enable secure identification of the caller

 A virtual interrupt line which supports signaling events from the SoC interface to the
Linux kernel interface

 Support for reading a memory space of Linux kernel shared with the SoC interface.

The KSP agent interface is primarily intended for exporting services which otherwise would
be difficult or impossible to implement in a guest OS.

Virtualized devices UM1942

202/220 DocID028276 Rev 1

The following paragraphs describe a list of device drivers “virtualized” that take advantage of
the KSP agent API interface to access to the hardware and/or to share resources with other
embedded systems.

 The KSP interface controller is a device driver that handles the accesses of the various
read/write to lower layers and/or the signaling coming from abstract layers to be
dispatched to the target device.

 The “Misc” manager is not a properly device driver. In order to configure the systems
during the machine initialization phase, the accesses to basic miscellaneous registers
are performed by calling read/write APIs provided by the KSP interface controller.

 Virtual log (“Vlog”) is a virtual console to the RTOS.

 Virtual Flash controllers are the device drivers that perform the SMI and FSMC NAND
Flash controllers, were updated in order to support a mechanism of accesses to the
memories shared with the RTOS, regulated by KSP interface call procedures.

 Virtual Ethernet (“VEth”), a device driver that exposes the HPAV modem to the Linux
kernel as an Ethernet device, in order to integrate it in the Linux standard network
stack.

 “Image Validate” device (“imageval”) is a device driver, it is used to notify to the RTOS
that the image is valid or not during the boot sequence. It is possible invalidate the
firmware image in each time.

11.1 KSP interface controller

In order to support the KSP agent at the Linux kernel, a device driver was implemented at
machine levels. It handles the signaling coming from the KSP interface and provides some
primitives used by the virtualized drivers to access to lower layers than the Linux kernel.

11.1.1 KSP software overview

The software implementing the KSP interface controller is in:

arch/arm/mach-streamplug/streamplug_ksp_agent.c.

In order to register the KSP interface to the STreamPlug machine:

arch/arm/mach-streamplug/streamplu1x.c

the streamplug_ksp_intf_registration is called during machine initialization.

During the probe sequence, the KSP interface controller tries to:

 Allocate space for its own data structures:

struct streamplug_ksp_dev {

 struct platform_device *pdev;

 /* spin lock */

 spinlock_t lock;

};

kspdev = kzalloc(sizeof(*kspdev), GFP_KERNEL);

DocID028276 Rev 1 203/220

UM1942 Virtualized devices

220

 Recover the KSP agent unique identifier from platform data, provided by the KSP
interface at start-up. The KSP agent is the key to access to the lower KSP interface.

ksp_agent = (struct okl4_tag_ksp_agent *)pdev->dev.platform_data;

 Register the virtual interrupt line assigned by the KSP interface, in order to handle the
signaling coming from below

err = request_irq(ksp_agent->virq, streamplug_ksp_agent_int_handler, 0,
pdev->name, kspdev) ;

where the “streamplug_ksp_agent_int_handler” is the IRQ handler specific for the KSP
agent. When interrupt arises, the handler will have to ask to the SoC interface for the
payload that includes the information of signaling in order to dispatch it to the correspondent
supported virtualized device drivers.

static irqreturn_t streamplug_ksp_agent_int_handler(int irq, void
*dev_id)

{

 struct streamplug_ksp_dev *dev = dev_id;

 okl4_channel_secondary_status_t payload = 0;

 unsigned int i;

 unsigned long flags;

 spin_lock_irqsave(&dev->lock, flags);

A Linux kernel panic error is generated, during the startup sequence, in case of
misalignment of the version number between the KSP interface and the RTOS.

payload = streamplug_ksp_get_irq_payload();

printk(KERN_DEBUG "%s: payload %x", func , (u32)payload);

if (!payload){

 printk(KERN_DEBUG "%s: Failed collect irq action ret=%x", func ,
(int)payload);

 } else {

 if(payload & (1 << (STREAMPLUG1X_VIRQ_SHUTDOWN -
STREAMPLUG1X_VIRQ_BASE)))

 {

 printk(KERN_WARNING "The system is going down NOW!");

 /* Send signals to every process _except_ pid 1 */

 sys_kill(-1, SIGTERM);

 printk(KERN_WARNING "Sent SIG%s to all processes", "TERM");

 sys_kill(-1, SIGKILL);

 printk(KERN_WARNING "Sent SIG%s to all processes", "KILL");

 // power off

 Kernel_power_off();

 }

 for (i=0; i<STREAMPLUG1X_NUM_DEV_VIRQS; i++) {

 if (payload & (1 << i)){

Virtualized devices UM1942

204/220 DocID028276 Rev 1

 printk(KERN_DEBUG "%s: irq bit %d, virq %d", func , i,
(int)(?'

 STREAMPLUG1X_VIRQ_BASE + i));

 generic_handle_irq((STREAMPLUG1X_VIRQ_BASE + i));

 }

 }

 }

 spin_unlock_irqrestore(&dev->lock, flags);

 return IRQ_HANDLED;

}

where “STREAMPLUG1X_VIRQ_BASE” is the base of the virtual interrupt lines list
assigned statically to each virtualized device driver (Vlog, Virtual Flash Controller, VEth).
The definitions are in the “arch/arm/mach-streamplug/include/mach/irqs.h” and their
assignment in the platform data structures of virtualised device drivers.

Below is a list of functions implemented in order to send commands to the KSP interface.
Each command is sent to lower layers using the API provided by the KSP agent
“_okl4_sys_ksp_procedure_call”. The list of commands supported are in the “arch/arm/mac-
streamplug/include/mach/streamplug_ksp_agent.h”.

 “streamplug_ksp_get_irq_payload” performs the “GET_IRQ_PAYLOAD” in order to
know which interrupt lines have to be dispatched at the kernel layer. Used by the KSP
interface controller driver.

 “streamplug_ksp_vlog_open” performs the “VLOG_OPEN” command in order to notify
to the RTOS the open of the Vlog Read/Write procedure. It is used by the Vlog device
driver.

 “streamplug_ksp_vlog_close” performs the “VLOG_CLOSE” command in order to
notify to the RTOS the termination of Read/Write procedures. It is used by the Vlog
device driver.

 “streamplug_ksp_vlog_read” performs the “VLOG READ” command in order to read
a character from the remote buffer. It is used by the VLog device driver.

 “streamplug_ksp_vlog_write” performs the “VLOG WRITE” command in order to write
a character into the remote buffer. It is used by the VLog device driver.

 “streamplug_ksp_misc_read_reg” performs the “MISC_REG_READ” command in
order to obtain the value of a certain “Misc” register of which offset is passed to the
KSP procedure call. It is used by “Misc”.

 “streamplug_ksp_misc_read_reg” performs the “MISC_REG_WRITE” command in
order to set a “Misc” register of which offset is passed to the KSP procedure call. It is
used by “Misc”.

 “streamplug_ksp_flash_mutex_handler” performs the request/release of “Mutex” by
Linux kernel in order to access to Flash memories when they are shared with remote
embedded systems. Used by Flash controller drivers.

 “streamplug_ksp_veth_generic_cmd” - it's a generic function that performs all the
commands towards the KSP interface for the Virtual Ethernet device driver.

DocID028276 Rev 1 205/220

UM1942 Virtualized devices

220

11.1.2 KSP kernel source and configuration

Table 37 lists the kernel configuration options associated with the KSP interface controller.

11.1.3 KSP platform configuration

The platform data associated to the KSP interface controller are in “arch/arm/mach-
streamplug/streamplug1x.c”.

struct platform_device streamplug1x_ksp_agent_device = {

 .name = "okl4-ksp-agent",

 .id = -1,

 .dev = {

 .platform_data = &okl4_ksp_agent,

 },

};

where “okl4_ksp_agent” is a global structure that provides the capabilities of the KSP agent
associated to the Linux kernel.

11.2 Miscellaneous register access (Misc)

According to the peripheral configuration specified in the Linux kernel command line a set of
miscellaneous registers have to be accessed during the startup procedure. The access is
not performed directly into the miscellaneous register memory space, but through the KSP
agent interface.

Misc software overview

During the machine initialization phase every time an access to a miscellaneous register is
required, the correspondent function is called. The functions are provided by the KSP
interface controller into “arch/arm/mach-streamplug/streamplug_ksp_agent.c”. For writing
procedures use:

void streamplug_ksp_misc_write_reg(unsigned int value, unsigned int *reg)

and for reading procedures use:

unsigned int streamplug_ksp_misc_read_reg(unsigned int *reg).

11.3 Virtual log

The “Virtual log” (VLog) is a device driver that virtualizes the UART interface of the RTOS.

Table 37. KSP agent controller configurations

Configuration Description

CONFIG_KSP_AGENT_ENABLED It enables support of the KSP interface controller

Virtualized devices UM1942

206/220 DocID028276 Rev 1

11.3.1 Virtual log software overview

VLog is a simple char driver, implemented below the “drivers/char/streamplug_vlog.c” file.

During the probe phase, it will have to register two different IRQ handlers, read and write,
each of them is associated to one interrupt line statically assigned by its own platform data.
Both of them will be notified to the VLog device driver by the KSP agent that will dispatch the
interrupt request to the correspondent handler according to the payload it recovers from the
lower KSP module.

READ

The procedure with which a user space application can ask to the Vlog driver to read is:

ssize_t dev_read(struct file *fil, char *buff, size_t len, loff_t *off)

{

 int size = 0;

 int i = 0;

 int left = 0;

 pr_debug("%s enter\n",__func__);

 pr_debug("Read flag: %x \n", read_flag);

 spin_lock(&sdev->lock);

 if(read_flag)

 {

 read_flag = 0;

 spin_unlock(&sdev->lock);

 size = streamplug_ksp_vlog_read(buff, len, &left);

 pr_debug("bytes left %d \n", left);

 // if there are bytes into the buffer, set the flag again

 if(left)

 read_flag = 1;

 }

 else

 spin_unlock(&sdev->lock);

 pr_debug("%s exit\n",__func__);

 return (ssize_t)size;

}

An interrupt for the reading procedure arises when at least one character is available in the
buffer of the RTOS.

DocID028276 Rev 1 207/220

UM1942 Virtualized devices

220

The VLog driver may access to the buffer where data are stored until this interrupt is
detected. Each read request coming from the user space is rejected with 0 bytes returned.
After its detection, at the first request from the user space, the VLog driver recovers char by
char from the buffer and forwards them to the user space application that will display them in
“stdout”. The buffer is handled by the soc module of the KSP interface, so the Vlog driver will
have to call the “streamplug_ksp_vlog_read” provided by the KSP agent controller, in order
to access it.

The KSP interface for the VLOG READ byte command will return the number of characters
still available within the remote buffer. The procedure will continue until no data will be
available within the buffer and VLOG driver will send a 0 to the user space.

WRITE

The procedure with which a user space application can ask to the Vlog driver to write is:

ssize_t dev_write(struct file *fil, const char *buff, size_t len, loff_t
*off)

{

 ssize_t ret = 0;

 int size = (unsigned int)len;

 pr_debug("%s enter\n",__func__);

 if(write_flag)

 {

 // there isn't enough space, stop to write

 if(!streamplug_ksp_vlog_write(buff,size))

 write_flag = 0;

 }

 pr_debug("write_flag %x", write_flag);

 pr_debug("%s exit\n",__func__);

 return len;

}

Every time the VLog driver receives a write request from user space applications, it will
forward the character passed from “stdin” to the remote buffer calling the procedure
provided by the KSP interface controller “streamplug_ksp_vlog_write”. The KSP interface
for the VLOG WRITE byte command will return the number of bytes the remote buffer may
still accept. When the buffer is full, no more data have to be sent by the VLog driver that will
have to wait for arising the interrupt for “Write” procedure dispatched by the KSP interface
controller. In that case the VLog driver may continue to send data to the remote buffer.

Virtualized devices UM1942

208/220 DocID028276 Rev 1

11.3.2 Virtual log kernel source and configuration

Table 38 lists the kernel configuration options associated with the KSP interface controller.

11.3.3 Virtual log platform configuration

The platform data associated to the KSP interface controller are in
“arch/arm/streamplug1x.c”.

/* vlog device registration */

static struct resource vlog_resources[] = {

 {

 .start = STREAMPLUG1X_VIRQ_VLOG_TO_RTOS,

 .flags = IORESOURCE_IRQ,

 }, {

 .start = STREAMPLUG1X_VIRQ_VLOG_FROM_RTOS,

 .flags = IORESOURCE_IRQ,

 }

};

struct platform_device streamplug_vlog_device = {

 .name = "streamplug-vlog",

 .id = 0,

 .num_resources = ARRAY_SIZE(vlog_resources),

 .resource = vlog_resources,

};

struct platform_device streamplug_vlog_device = {

 .name = "streamplug-vlog",

 .id = 0,

 .num_resources = ARRAY_SIZE(vlog_resources),

 .resource = vlog_resources,

};

Table 38. Virtual log configurations

Configuration Description

CONFIG_STREAMPLUG_VLOG It enables the virtual log driver support

DocID028276 Rev 1 209/220

UM1942 Virtualized devices

220

11.3.4 Virtual log usage

The steps to test the VLog device drivers are:

1. Verify if the device is correctly registered:

$ cat /proc/devices | grep vlog

2. Create the correspondent node:

$ mknod /dev/vlog c 'cat /proc/devices | grep vlog | awk '{print
$1}'' 1

3. To run use the utilities provided by the Linux kernel, and wait for characters in “stdin” in
the background:

$ tail -f /dev/vlog &

4. Send characters into “stdout”:

$ echo "<option>" > /dev/vlog

In addition, a small application named “stpconsole” is available in the example set and in the
default root filesystem to expose the RTOS console in Linux. This application permits the
access to the RTOS interface when the UARTs are not available because needed by the
application.

11.4 SMI/FSMC NAND memory shared access

The Flash controllers device drivers (SMI and FSMC NAND) have been modified in order to
support the shared access by two different software components such, for example, the
Linux kernel and the RTOS.

The Flash controllers allow the shared access through the use of a Mutex mechanism. This
means that whenever a component accesses the Flash, it first has to obtain the
corresponding Mutex. If this is not possible then it has to wait until the Mutex is freed from
the other component.

The Flash controller has a virtual interrupt line assigned to, in order to be notified through
the KSP interface controller that one of the components need to access to the Flash.

In the STreamPlug the Flash controllers have been modified to allow the shared access to
the corresponding Flashes by the Linux kernel and the RTOS. However, only the Linux
kernel Flash controller get notified of the access request by the RTOS.

11.4.1 SMI/FSMC NAND software overview

In order to be notified by the KSP agent interface driver to locked/unlocked the Flash
memory by remote systems, the SMI/FSMC NAND Flash controllers have to register their
own virtual interrupt lines assigned statically and stored into platform data. For both
controllers, the two IRQ handlers associated will have to handle the state of memory
(reserved to Linux kernel or RTOS), and the state of the driver when interrupt is detected.

The IRQs handling is the same for both SMI and FSMC NAND Flash controllers.

Flash memory status

As default, the Flash memory is reserved to the Linux kernel system. When the request
interrupt arrives, the state of memory changes from reserved to RTOS. When the release
interrupt occurs, the state comes back to reserved to Linux. Different actions are taken
according to the current state of the driver such as: if there are no accesses ongoing, the
state of the controller is IDLE and in case of a request from the ROTS state the Mutex is

Virtualized devices UM1942

210/220 DocID028276 Rev 1

immediately released, while in case of release indication the procedure to acquire the Mutex
is started. If there is an access in memory ongoing, nothing is performed until the procedure
ends, but internal flags are updated to force Flash memory area status change and to force
the Mutex release of the request.

If a Mutex request or Mutex release is already ongoing, nothing is performed until the
procedure ends, but internal flags are updated to force Flash memory area status change
and to force the Mutex release of the request.

Mutex request/release

When the Flash memory status is reserved to the Linux kernel, no accesses to the KSP
interface are performed in order to acquire/release the Mutex. This is done by calling the
“streamplug_ksp_flash_mutex_handler” with the appropriate command provided by the
KSP interface controller.

In case of Flash memory status is RTOS, the Flash controller has always to wait for
a release indication and acquire the Mutex before the access to the memory.

11.4.2 SMI/FSMC NAND kernel source and configuration

The support of the virtual interrupt handler by the SMI/FSMC NAND is subordinated by
enabling the “CONFIG_KSP_AGENT_ENABLED” option.

11.4.3 SMI/FSMC NAND platform configuration

The new interrupt lines were added and statically assigned to the resources of both SMI and
FSMC NAND.

11.5 HomePlug AV (HPAV) driver

The HomePlug AV (HPAV) driver is a virtualized device driver that exposes the HPAV
modem to the Linux kernel as an Ethernet device, in order to integrate it in the Linux
standard network stack, as illustrated in Figure 24.

DocID028276 Rev 1 211/220

UM1942 Virtualized devices

220

Figure 24. HPAV stack software overview

11.5.1 HPAV software overview

The structure of the HomePlug AV device driver reflects the generic Ethernet device driver
structure. Linux supports some standard “ioctl” commands to configure network devices at
the user space level. In the future more “ioctl” commands will be provided to extend existing
features.

The main difference is the new interaction with the KSP interface at the kernel space level.
The KSP interface interacts with the HPAV device driver via:

 Interrupts

 Commands

In both cases, there's a strict interaction with the KSP agent interface controller that
provides the capabilities to send commands and the dispatcher to notify the signaling via
interrupt routine of messages receptions.

During the probe phase, all the platform data of KSP info are recovered in order to register
the interrupt to the KSP interface and acquire a shared memory buffer for memory
operations. As for the other virtualized device driver, the HPAV has to register its own virtual
interrupt, the line of which is passed through platform data by the machine definition.

HTTP

Socket interface

SSH User space

Kernel space

RTOS

UDP - TCP/IP stack

FTP

Raw L2

NETIF interface

HPAV virtual device driver

HPAV MAC

AM039814

Virtualized devices UM1942

212/220 DocID028276 Rev 1

This is performed during the device open function shown below:

...

set_irq_chip_and_handler_name(dev->irq, &stmmac_ksp_chip,
stmmacvirt_interrupt, "vstmmac");

set_irq_flags(dev->irq, (IRQF_VALID|IRQF_SHARED));

set_irq_chip_data(dev->irq, dev);

...

where the “stmmacvirt_interrupt” is the virtual IRQ handler:

static irqreturn_t stmmacvirt_interrupt(int irq, struct irq_desc *desc)

{

 struct net_device *dev = desc->chip_data;

 struct stmmac_virt_priv *priv = netdev_priv(dev);

#if defined(STMMAC_VIRT_XMIT_DEBUG) || defined(STMMAC_VIRT_RX_DEBUG)

 printk(KERN_DEBUG "%s: interrupt occurred virq %d, desc %x", __func__,
irq, desc);

#endif

 if (unlikely(!dev)) {

 pr_err("%s: invalid dev pointer\n", __func__);

 return IRQ_NONE;

 }

 stmmacvirt_dma_interrupt(priv);

 return IRQ_HANDLED;

}

11.5.2 HPAV kernel source and configuration

Table 39 lists the kernel configuration options associated with the KSP interface controller.

11.5.3 HPAV platform configuration

The platform data associated to HPAV are in “arch/arm/mach-streamplug/streamplug1x.c”.

static struct resource virteth_resources[] = {

 {

 .start = STREAMPLUG1X_VIRQ_ETH,

 .flags = IORESOURCE_IRQ,

 },

};

Table 39. Virtual Ethernet configurations

Configuration Description

CONFIG_STMMAC_VIRT_ETH It enables the support of HomePlug AV driver

DocID028276 Rev 1 213/220

UM1942 Virtualized devices

220

/* virtual phy device */

static struct plat_stmmacvirtphy_data virtphy_private_data = {

 .bus_id = 0,

 .phy_addr = -1,

 .phy_mask = 0,

 .interface = PHY_INTERFACE_MODE_MII,

};

struct platform_device streamplug1x_virtphy_device = {

 .name = "stmmacvirtphy",

 .id = -1,

 .dev.platform_data = &virtphy_private_data,

};

/* Virtual ethernet device registration */

struct plat_stmmacenet_data virtether_platform_data = {

 .bus_id = 0,

 .has_revmii = 0,

 .has_gmac = 0,

 .enh_desc = 0,

 .pbl = 8,

 .dev_addr = "01:80:e1:26:0a:5b",

};

static u64 virteth_dma_mask = ~(u32) 0;

struct platform_device streamplug1x_virteth_device = {

 .name = "stmmacvirteth",

 .id = -1,

 .num_resources = ARRAY_SIZE(virteth_resources),

 .resource = virteth_resources,

 .dev = {

 .platform_data = &virtether_platform_data,

 .dma_mask = &virteth_dma_mask,

 .coherent_dma_mask = ~0,

 },

};

11.6 Image validate device driver

Linux notifies to RTOS that the image is valid or not during the boot sequence and specifies
the kernel version. It is also possible to set a user application version. Both versions are
16 bytes long.

Virtualized devices UM1942

214/220 DocID028276 Rev 1

11.6.1 Image validate device driver software overview

Image validity is a simple char driver, implemented below the
”drivers/char/streamplug_image_validity.c” file.

WRITE

During the write operation a KSP agent is sent to set the user version.

The procedure with which a user space application can ask to the image validity driver to
write is:

ssize_t dev_iv_write(struct file *fil, const char *buff, size_t len, loff_t
*off)

{

 if (!buff)

 return 0;

 if (len > USER_IMAGE_VER_SIZE)

 len = USER_IMAGE_VER_SIZE;

 memcpy(idev->version, buff, len);

 if (!streamplug_ksp_set_image_version_handler(idev->version, len))

 return len;

 else

 return 0;

}

READ

The procedure with which a user space application can ask to the image validity driver to
read is:

ssize_t dev_iv_read(struct file *fil, char *buff, size_t len, loff_t *off)

{

 if (len > USER_IMAGE_VER_SIZE)

 len = USER_IMAGE_VER_SIZE;

 memcpy(buff, idev->version, len);

 return (ssize_t)len;

}

This operation permits to know the value of the image version and it is used to check the
result of write procedure.

DocID028276 Rev 1 215/220

UM1942 Virtualized devices

220

IOCTL

This function is used to perform two operations: “SET_IMAGE_STATUS” and
“GET_IMAGE_STATUS”.

During the “SET_IMAGE_STATUS” operation a KSP agent is sent to notify to RTOS the
validity of the image (0 and 1 are the only values allowed, 0 for an invalid image and 1 for
a valid one). The image value is invalid by default and if the driver receives a new request to
update a valid value, it issues the KSP, but if the value is already set valid, the driver doesn't
issue the KSP agent. The “SET_IMAGE_STATUS” operation is a call at least of the Linux
initialization process (at the end of “/etc/inittab”).

The “GET_IMAGE_STATUS” operation permits to know the value of image validity and it is
used to check the result of the “SET_IMAGE_STATUS” operation.

static long dev_iv_ioctl(struct file* fil, unsigned int cmd, unsigned long
arg)

{

 long ret=0;

 u32 status = arg;

 switch (cmd) {

 case SET_IMAGE_STATUS:

 if ((status == IMAGE_GOOD) || (status == IMAGE_NO_GOOD))

 {

 if (idev->value != status)

 {

 printk(KERN_DEBUG "%s value = %u\n",__func__, status);

 idev->value = status;

 ret = streamplug_ksp_set_image_validity_handler(status);

 }

 }

 else

 ret = -EINVAL;

 break;

 case GET_IMAGE_STATUS:

 printk(KERN_DEBUG "%s value is %d\n",__func__, idev->value);

 ret = (long) idev->value;

 break;

 default:

 ret = -EINVAL;

 }

 return ret;

}

Virtualized devices UM1942

216/220 DocID028276 Rev 1

11.6.2 Image validate device driver kernel source and configuration

Table 40 lists the kernel configuration options associated with the KSP interface controller.

When the “CONFIG_EARLY_SET_IMAGE_GOOD” is enabled the drivers are compatible
with the old file systems. The kernel calls the KSP agent to notify to RTOS that the image is
valid. The image value is good by default and if the driver receives some new request
returns always success.

11.6.3 Image validate device driver platform configuration

The platform data associated to the KSP interface controller are in “arch/arm/mach-
streamplug/streamplug1x.c”.

/* image validity device registration */

struct platform_device streamplug_iv_device = {

 .name = "streamplug-image-validity",

 .id = 0,

}

11.6.4 Image validate device driver usage

The steps to test the image validity device drivers are:

1. Verify if the device is correctly registered:

$ cat /proc/devices | grep imageval

2. Create the correspondent node, if it does not exist:

$ mknod /dev/imageval c 'cat /proc/devices | grep imageval | awk
'{print $1}'' 1

In addition, a small application named “stpimagevalidate” is available in the example set and
in the default root file system to be used after the Linux initialization or to invalidate the
firmware image. The option of this application are:

 Usage: stpimagevalidate [options]

 “-i “ sets the image as invalid

 “-v “sets the image as valid

 “-n <version>” sets the image version

 “-s” shows image information

 “-h” displays this usage information.

Table 40. Image validity configuration

Configuration Description

CONFIG_STREAMPLUG_IMAGE_VALIDITY It enables the image validity driver support

CONFIG_EARLY_SET_IMAGE_GOOD It enables the early set image good

DocID028276 Rev 1 217/220

UM1942 Acronyms

220

Appendix A Acronyms

Table 41 contains a list of acronyms used within the document.

Table 41. List of acronyms

Acronym Definition

AMBA Advanced microcontroller bus architecture

ADC Analog-to-digital converter

ARM Advanced RISC machine

AVB Audio Video Bridging

BSP Board support package

C3 Channel controller coprocessor

CAN Controller area network

CPU Central processing unit

DDR Double data rate SDRAM

DHCP Dynamic host configuration protocol

DMA Direct memory access

DWC Designware cores

EEPROM Electrically erasable programmable read only memory

EP PCIe endpoint device

FS File system

FSMC Flexible static memory controller

FW Firmware

GPIO General purpose input/output signal

HID Human interface device

I2C Inter-integrated circuit

I2S Inter-IC sound

IP Internet protocol

IPs Intellectual Properties

JFFS2 Journaling Flash file system version 2

JPEG Joint photographic experts group

JTAG Joint test action group

KSP Kernel support packages provided by OKL Microvisor

MFIO Multifunction input/output signal

MTD Memory technology device

NFS Network file system

OOB Out-of-band

Acronyms UM1942

218/220 DocID028276 Rev 1

PC Personal computer

PCIe Peripheral component interconnect express

RevMII Reverse media independent interface

RC PCI-e root complex device

RTC Real-time clock

SATA Serial advanced technology attachment

SCP Secure copy Linux command

SDRAM Synchronous dynamic random access memory

SDK OKL4 SDK

SMI Serial Management Interface

SoC System-on-chip

SOC Definition of board the chip is mounted on

SPI Serial Peripheral Interface bus

SPORT Serial port

TAG Tagged List

UART Universal asynchronous receiver/transmitter

USB Universal serial bus

VIC Vectored interrupt controller

Table 41. List of acronyms (continued)

Acronym Definition

DocID028276 Rev 1 219/220

UM1942 Revision history

220

Revision history

Table 42. Document revision history

Date Revision Changes

26-Nov-2015 1 Initial release.

UM1942

220/220 DocID028276 Rev 1

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics – All rights reserved

	1 STreamPlug full software architecture
	Figure 1. STreamPlug full software architecture

	2 Linux OS
	Linux support package (LSP)
	Table 1. Linux support package

	3 Platform
	3.1 Platform description
	3.1.1 Platform software overview
	3.1.2 Platform kernel source and configuration
	Table 2. Linux branches

	3.1.3 Platform configuration

	3.2 Board support
	3.2.1 Board registration
	Table 3. STreamPlug machine ID

	3.2.2 Board compilation support

	3.3 Pad multiplexing support
	3.3.1 Pad software overview
	3.3.2 Pad kernel source and configuration
	3.3.3 Pad usage
	Table 4. Command line options for padmux configuration

	3.4 Clock framework
	3.4.1 Clock framework software overview
	3.4.2 Clock framework kernel source and configuration
	3.4.3 Clock framework internals
	3.4.4 Clock framework usage

	3.5 Real-time clocks (RTC)
	3.5.1 RTC software overview
	Figure 2. RTC software stack

	3.5.2 RTC kernel source and configuration
	Table 5. RTC configurations

	3.5.3 RTC platform configuration
	3.5.4 RTC usage

	4 Communication drivers
	4.1 Gigabit media access controller (GMAC) - Ethernet
	4.1.1 GMAC software overview
	Figure 3. Ethernet framework

	4.1.2 GMAC kernel source and configuration
	Table 6. STreamPlug STMMAC configurations

	4.1.3 GMAC platform configuration
	4.1.4 GMAC usage

	4.2 Universal serial bus (USB) host
	4.2.1 USB host kernel source and configuration
	Table 7. USB host configurations

	4.2.2 USB host platform configuration
	4.2.3 USB host usage

	4.3 Universal serial bus (USB) device
	4.3.1 USB device software overview
	Figure 4. USBD software architecture

	4.3.2 USB device kernel source and configuration
	4.3.3 USB device platform configuration
	Table 8. USB gadget Linux kernel configuration

	4.3.4 USB device usage
	Figure 5. Zero gadget device
	Table 9. Linux gadget framework API
	Table 10. USB device control APIs

	4.3.5 USB platform configuration
	4.3.6 USB platform usage

	4.4 I2C controller
	4.4.1 I2C controller hardware overview
	4.4.2 I2C controller software overview
	Figure 6. I2C framework architecture

	4.4.3 I2C controller kernel source and configuration
	Table 11. I2C configurations

	4.4.4 I2C controller platform configuration
	4.4.5 I2C controller usage

	4.5 Serial peripheral interface (SPI) controller
	Figure 7. SPI master/slave connectivity
	4.5.1 SPI software overview
	Figure 8. SPI framework architecture

	4.5.2 SPI kernel source and configuration
	Table 12. SPI configurations

	4.5.3 SPI platform configuration
	4.5.4 SPI usage

	4.6 Linux TTY framework
	4.6.1 Linux TTY framework software overview
	4.6.2 Linux TTY framework kernel source
	4.6.3 Linux TTY framework usage

	4.7 Universal asynchronous receiver/transmitter (UART)
	4.7.1 UART software overview
	Figure 9. UART software system architecture

	4.7.2 UART kernel source and configuration
	4.7.3 UART platform configuration
	4.7.4 UART usage

	4.8 Control area network (CAN)
	4.8.1 CAN software overview
	4.8.2 CAN kernel source and configuration
	Table 13. CAN Linux kernel configuration

	4.8.3 CAN platform configuration
	4.8.4 CAN usage

	4.9 Fast infrared data association (FIrDA)
	4.9.1 FIrDA software overview
	4.9.2 FIrDA kernel source and configuration
	Table 14. FIrDA Linux kernel configuration

	4.9.3 FIrDA platform configuration
	4.9.4 FIrDA usage

	4.10 Peripheral component interconnect express (PCIe)
	4.10.1 PCIe software overview
	4.10.2 PCIe kernel source and configuration
	Table 15. PCIe configurations
	Table 16. PCIe root complex configurations
	Table 17. PCIe endpoint configurations

	4.10.3 PCIe platform configuration
	4.10.4 PCIe usage

	4.11 Serial advanced technology attachment (SATA)
	4.11.1 SATA software overview
	4.11.2 SATA kernel source and configuration
	Table 18. SATA source code files
	Table 19. Linux kernel configuration for SATA support

	4.11.3 SATA platform configuration
	4.11.4 SATA usage

	5 Memory technology devices (MTD)
	5.1 Linux MTD framework
	MTD kernel configuration
	Table 20. MTD configurations

	5.2 Accessing to MTD devices
	5.2.1 Raw access from user space
	5.2.2 Raw access from kernel space
	5.2.3 Access through file system from user space

	5.3 Flexible static memory controller (FSMC)
	5.3.1 NAND, FSMC
	Figure 10. NAND FSMC software stack
	Table 21. FSMC NAND configurations

	5.3.2 Parallel NOR, FSMC
	Figure 11. NOR FSMC stack
	Table 22. FSMC NOR configurations

	5.3.3 Static RAM (SRAM), flexible static memory controller
	Figure 12. SRAM software stack
	Table 23. FSMC SCRAM configurations

	5.4 Serial memory interface (SMI)
	5.4.1 SMI hardware overview
	5.4.2 SMI software overview
	Figure 13. SMI software stack

	5.4.3 SMI kernel source and configuration
	Table 24. SMI configurations

	5.4.4 SMI platform configuration

	6 Accelerators
	6.1 JPEG encoder/decoder
	6.1.1 JPEG encoder/decoder software overview
	Figure 14. JPEG software architecture

	6.1.2 JPEG encoder/decoder kernel source and configuration
	Table 25. JPEG driver configuration options

	6.1.3 JPEG encoder/decoder platform configuration
	6.1.4 JPEG encoder/decoder usage

	6.2 Direct memory access (DMA)
	6.2.1 DMA hardware overview
	6.2.2 DMA software overview
	Figure 15. DMA framework architecture

	6.2.3 DMA kernel source and configuration
	Table 26. DMA configurations

	6.2.4 DMA platform configuration
	6.2.5 DMA usage

	6.3 Channel controller coprocessor (C3)
	6.3.1 C3 software overview
	6.3.2 C3 kernel source and configuration
	Table 27. C3 Linux kernel configuration

	6.3.3 C3 platform configuration
	6.3.4 C3 usage

	7 Frame buffer drivers
	Color liquid crystal display (CLCD)
	CLCD software overview
	CLCD kernel source and configuration
	Table 28. CLCD configurations

	CLCD usage

	8 Miscellaneous devices
	8.1 General purpose input/output (GPIO)
	8.1.1 GPIO software overview
	Figure 16. GPIO software stack

	8.1.2 GPIO kernel source and configuration
	Table 29. GPIO configurations

	8.1.3 GPIO platform configuration
	8.1.4 GPIO usage

	8.2 Application specific GPIO (AS GPIO)
	8.2.1 AS GPIO software overview
	8.2.2 AS GPIO kernel source and configuration
	Table 30. AS GPIO configurations

	8.2.3 AS GPIO platform configuration
	8.2.4 AS GPIO usage
	Table 31. AS GPIO PWM prescaler configurations
	Figure 17. Dual PWM GPIO example

	8.3 Watchdog timer (WDT) driver
	8.3.1 WDT software overview
	Figure 18. WDT software stack

	8.3.2 WDT kernel source and configuration
	Table 32. WDT Linux kernel configurations
	Table 33. Watchdog IOCTLs

	8.3.3 WDT usage

	9 Audio drivers
	SPORT controller
	SPORT controller software overview
	Figure 19. ALSA framework

	SPORT controller kernel source and configuration
	Table 34. SPORT- I2S configurations

	SPORT controller platform configuration
	SPORT controller usage

	10 Video drivers
	10.1 Video for Linux Two framework
	Figure 20. V4L2 software overview
	Programming a V4L2 device

	10.2 SoC-Camera framework
	Figure 21. SoC-Camera interface
	Figure 22. SoC-Camera software overview
	10.2.1 Camera interface
	10.2.2 V4L2 subdev API

	10.3 Video transport stream (TS)
	10.3.1 TS software overview
	Figure 23. TS software overview

	10.3.2 TS kernel source and configuration
	Table 35. TS Linux kernel configuration options

	10.3.3 TS platform configuration
	10.3.4 TS usage
	Table 36. Image sensor delay parameter

	11 Virtualized devices
	11.1 KSP interface controller
	11.1.1 KSP software overview
	11.1.2 KSP kernel source and configuration
	Table 37. KSP agent controller configurations

	11.1.3 KSP platform configuration

	11.2 Miscellaneous register access (Misc)
	Misc software overview

	11.3 Virtual log
	11.3.1 Virtual log software overview
	11.3.2 Virtual log kernel source and configuration
	Table 38. Virtual log configurations

	11.3.3 Virtual log platform configuration
	11.3.4 Virtual log usage

	11.4 SMI/FSMC NAND memory shared access
	11.4.1 SMI/FSMC NAND software overview
	11.4.2 SMI/FSMC NAND kernel source and configuration
	11.4.3 SMI/FSMC NAND platform configuration

	11.5 HomePlug AV (HPAV) driver
	Figure 24. HPAV stack software overview
	11.5.1 HPAV software overview
	11.5.2 HPAV kernel source and configuration
	Table 39. Virtual Ethernet configurations

	11.5.3 HPAV platform configuration

	11.6 Image validate device driver
	11.6.1 Image validate device driver software overview
	11.6.2 Image validate device driver kernel source and configuration
	Table 40. Image validity configuration

	11.6.3 Image validate device driver platform configuration
	11.6.4 Image validate device driver usage

	Appendix A Acronyms
	Table 41. List of acronyms

	Revision history
	Table 42. Document revision history

